



**Institute of Oceanology  
Polish Academy of Sciences**



**Report  
from the RV Oceania  
research cruise**

# **AREX 2025**

## **Leg I (1.07-19.07.2025)**

Cruise leader: Dr Agnieszka Beszczyńska-Möller

## **Leg II (19.07 - 30.07.2025)**

Cruise leader: Dr Ilona Gosczko

## **Leg IIIa (30.07-12.08.2025)**

## **Leg IIIb (12.08-22.08.2025)**

Cruise leader: Dr Katarzyna Grzelak

## **Leg IV (22.08-27.08.2025)**

Cruise leader: Prof. Jan Marcin Węsławski

## **Leg V (27.08-08.09.2025)**

Cruise leader: Dr hab. Sławomir Woźniak, prof. IOPAN

*AREX 2025 cruise PI/coordinator: Dr Agnieszka Beszczyńska-Möller*

# Content

|        |                                                                                                              |    |
|--------|--------------------------------------------------------------------------------------------------------------|----|
| 1      | Scientific background of the AREX 2025 cruise .....                                                          | 5  |
| 1.1    | Long-term large-scale Arctic monitoring program AREX .....                                                   | 5  |
| 1.2    | International and national projects with fieldwork during AREX2025 .....                                     | 6  |
| 1.2.1  | HE MARBEFES .....                                                                                            | 6  |
| 1.2.2  | HE HiAOOS .....                                                                                              | 6  |
| 1.2.3  | HE SEA-Quester .....                                                                                         | 6  |
| 1.2.4  | HE Euro-Argo ONE .....                                                                                       | 6  |
| 1.2.5  | International observing network A-DBO .....                                                                  | 7  |
| 1.2.6  | Argo Poland .....                                                                                            | 7  |
| 1.2.7  | NCN SURETY .....                                                                                             | 7  |
| 1.2.8  | NCN TWINS .....                                                                                              | 8  |
| 1.2.9  | NCN LAPSE .....                                                                                              | 8  |
| 1.2.10 | NCN DRAGONnest .....                                                                                         | 8  |
| 1.2.11 | NCN OptiCal-Green .....                                                                                      | 8  |
| 2      | Research program of the AREX 2025 cruise .....                                                               | 9  |
| 2.1    | Research tasks during Leg I Tromsø – Longyearbyen (Barents and Greenland Seas, souuthern Fram Strait) .....  | 9  |
| 2.2    | Research tasks during Leg II Longyearbyen – Longyearbyen (nothern Fram Strait, north of Svalbard) .....      | 10 |
| 2.3    | Research tasks during Leg IIIa Longyearbyen – Longyearbyen (Hornsund) .....                                  | 10 |
| 2.3.1  | Marine Ecology Department - plankton (PEP) .....                                                             | 10 |
| 2.3.2  | Marine Ecology Department - plankton (PFBP) .....                                                            | 10 |
| 2.3.3  | Marine Ecology Department - benthos .....                                                                    | 11 |
| 2.3.4  | Marine Dynamics Department - physical oceanography .....                                                     | 11 |
| 2.3.5  | Marine Physics Department - marine optics .....                                                              | 11 |
| 2.3.6  | Marine Chemistry and Biochemistry Department .....                                                           | 12 |
| 2.4    | Research tasks during Leg IIIb Longyearbyen – Longyearbyen (Kongsfjorden, Isfjorden, Magdalenefjorden) ..... | 12 |
| 2.4.1  | Marine Ecology Department - plankton (PEP) .....                                                             | 12 |
| 2.4.2  | Marine Ecology Department - plankton (PFBP) .....                                                            | 12 |

|       |                                                                                                   |    |
|-------|---------------------------------------------------------------------------------------------------|----|
| 2.4.3 | Marine Ecology Department - benthos .....                                                         | 13 |
| 2.4.4 | Marine Dynamics Department - physical oceanography.....                                           | 13 |
| 2.4.5 | Marine Physics Department - marine optics .....                                                   | 13 |
| 2.4.6 | Marine Chemistry and Biochemistry Department.....                                                 | 14 |
| 2.5   | Research tasks during Leg IV Longyearbyen - Longyearbyen (Isfjorden).....                         | 14 |
| 2.5.1 | Marine Ecology Department and Climate and Ocean Research and Education Laboratory - ecology ..... | 14 |
| 2.6   | Research tasks during Leg V Longyearbyen - Gdańsk.....                                            | 14 |
| 2.6.1 | Marine Physics Department - marine optics .....                                                   | 14 |
| 2.6.2 | Marine Physics Department - marine acoustics .....                                                | 14 |
| 3     | General schedule of the AREX 2025 cruise.....                                                     | 15 |
| 4     | AREX 2025 cruise itinerary .....                                                                  | 16 |
| 5     | Mesurements and sampling program during AREX 2025 Leg I-II .....                                  | 22 |
| 5.1   | General information about Leg I and II.....                                                       | 22 |
| 5.2   | Detailed description of oceanographic measurements.....                                           | 22 |
| 5.3   | Detailed description of aerosol and meteorological measurements .....                             | 28 |
| 5.4   | Detailed description of sea surface microlayer (SML) measurements .....                           | 30 |
| 5.5   | Detailed description of biological measurements .....                                             | 33 |
| 6     | Mesurements and sampling program during AREX 2025 Leg IIIa.....                                   | 39 |
| 6.1   | General information about Leg IIIa.....                                                           | 39 |
| 6.2   | Detailed description of biological measurements – plankton (PEP).....                             | 42 |
| 6.3   | Detailed description of biological measurements – plankton (PFBP).....                            | 44 |
| 6.4   | Detailed description of biological measurements – benthos .....                                   | 47 |
| 6.5   | Detailed description of marine optical measurements .....                                         | 50 |
| 6.6   | Detailed description of marine chemistry measurements .....                                       | 54 |
| 6.7   | Detailed description of oceanographic measurements.....                                           | 55 |
| 7     | Mesurements and sampling program during AREX 2025 Leg IIIb .....                                  | 57 |
| 7.1   | General information about Leg IVb .....                                                           | 57 |
| 7.2   | Detailed description of biological measurements – plankton (PEP).....                             | 59 |
| 7.3   | Detailed description of biological measurements – plankton (PFBP).....                            | 61 |
| 7.4   | Detailed description of biological measurements – benthos .....                                   | 62 |

|     |                                                                       |    |
|-----|-----------------------------------------------------------------------|----|
| 7.5 | Detailed description of optical measurements .....                    | 65 |
| 7.6 | Detailed description of marine chemistry measurements .....           | 66 |
| 7.7 | Detailed description of oceanographic measurements.....               | 68 |
| 8   | Mesurements and sampling program during AREX 2025 Leg IV .....        | 69 |
| 8.1 | Detailed description of coastal measurements in Isfjorden.....        | 69 |
| 9   | Mesurements and sampling program during AREX 2025 Leg V .....         | 70 |
| 9.1 | General information about Leg V .....                                 | 70 |
| 9.2 | Detailed description of marine optics measurements .....              | 70 |
| 9.3 | Detailed description of marine acoustic measurements.....             | 72 |
| 9.4 | Detailed description of aerosol and meteorological measurements ..... | 74 |
| 10  | Summary of the AREX 2025 research cruise.....                         | 75 |

# 1 Scientific background of the AREX 2025 cruise

## 1.1 Long-term large-scale Arctic monitoring program AREX

Oceanographic, physical, atmospheric, and biogeochemical measurements conducted since 1987 in the Nordic Seas and Fram Strait by the Institute of Oceanology of the Polish Academy of Sciences in Sopot aim to investigate and describe the processes shaping ocean climate and ecosystem of the subarctic and Arctic regions, with a particular focus on the European Arctic.

The annual summer measurement expeditions, known as AREX, involve multidisciplinary in situ measurements, including oceanographic, optical, acoustic, biogeochemical, biological, and atmospheric data collection in the Nordic Seas, Fram Strait, and the fjords of western Svalbard. In recent years, these studies have also extended to ice-free areas of the Arctic Ocean. The measurements are carried out annually at similar times of the year on a regular grid of over 300 research stations covering the Norwegian Sea, Greenland Sea, the entrance to the Barents Sea, Fram Strait, fjords of western Svalbard (Hornsund, Isfjord, Kongsfjord), and the southern part of the Nansen Basin.

The time series of key oceanic variables (EOVs, Essential Ocean Variables) collected over more than 31 years of AREX measurements allow for monitoring changes occurring on various temporal scales in the physical and biological Arctic environment. They also contribute to improving existing models of the ocean, sea ice, and climate in the Arctic region.

The AREX program also represents the contribution of the Institute of Oceanology of the Polish Academy of Sciences (IOPAN) to research conducted as part of international collaborations, including European projects such as VEINS (1997–2000), ASOF-N (2003–2005), DAMOCLES (2006–2009), INTAROS (2016–2021) as well as Polish-Norwegian research projects AWAKE (1 and 2), PAVE, POLNOR, CLISE, CDOM-HEAT, and DWARF (2013–2016). The collected data are also used in numerous projects funded by the National Science Centre (NCN) and the National Centre for Research and Development (NCBR), as well as in doctoral research.

The measurements planned during the AREX 2025 cruise also constitute IOPAN's contribution to the implementation of international projects, including EU HE HiAOOS (2023–2026), HE MARBEFES (2022–2026), HE Euro-Argo ONE (2025–2027), HE Sea-QUESTER, the infrastructure project ArgoPolska (Euro-Argo ERIC), as well as other projects carried out in national and international cooperation (SURETY, LAPSE, TWINS, DraginNEST, OpticalGreen, and others). The long-term measurements conducted on standard transects and stations form IOPAN contribution to the international observational program in the European Arctic, A-DBO (Atlantic Arctic Distributed Biological Observatory), as well as to long-term ocean observation series that are part of the ICES Report on Ocean Climate, published annually by the ICES Ocean Hydrography Working Group (OHWG).

## 1.2 International and national projects with fieldwork during AREX2025

### 1.2.1 HE MARBEFES

The **MARBEFES** project is based on the concept that biodiversity constitutes a continuous and interconnected system in space and time, transcending traditional boundaries such as "estuary," "coast," or "open waters." MARBEFES considers the gradient from river to ocean, utilizing 12 Broad Transect Belts across four major EU marine regions – the Arctic, Baltic, Atlantic, and Mediterranean. The primary goal of MARBEFES is to establish clear links between biodiversity, ecosystem functions, and the societal benefits they provide. This goal is achieved through an innovative set of ecological, economic, and socio-cultural tools, enabling a comprehensive valuation to support sustainable policy and management of marine ecosystems.

### 1.2.2 HE HiAOOS

The **HiAOOS - High Arctic Ocean Observing System** project aims to develop, implement, and validate new ocean observation technologies to improve the acquisition of measurement data from the ice-covered regions of the Arctic Ocean. A network of multifunctional, moored measurement arrays will be deployed for two years in the Nansen Basin, the Amundsen Basin, and north of Svalbard. To better utilize the capabilities of the new observation system, new methods and tools for data analysis and visualization will be developed, including the use of modern machine learning techniques. For training purposes and to enable the use of new data and methods by a wide range of stakeholders, the Blue Insight platform will be developed, serving as a digital analog of the studied Arctic Ocean regions.

### 1.2.3 HE SEA-Quester

The **Sea-Quester - Production, Export, and Sequestration of Blue Carbon in Emerging Polar Ecosystems** project studies the carbon cycle in new polar marine ecosystems that are forming as a result of climate change. Melting sea ice, shifting currents, and warming oceans are already influencing species distribution, behavior, and metabolism. However, little is known about how these changes will affect marine biodiversity and the functions and services of ecosystems, such as carbon sequestration, in polar seas. These changes could have significant implications for achieving biodiversity conservation goals and mitigating the effects of climate change.

### 1.2.4 HE Euro-Argo ONE

The **Euro-Argo ONE (EAONE)** project aims to develop mechanisms enabling the implementation of OneArgo by Euro-Argo ERIC. This requires adapting the OneArgo concept to the European context, improving the Argo data system, strengthening Euro-Argo ERIC's operational and technical capacities, and engaging a wide range of stakeholders, including scientific and operational users, national administrations, the education sector, and the general public interested in climate change and ocean health. The overarching goal of the

project is to expand the activities of Euro-Argo ERIC partners to ensure Europe's effective contribution to the global OneArgo network. In particular, the project addresses challenges such as developing a comprehensive European OneArgo network structure, improving the delivery of OneArgo data and services, enhancing operational efficiency across diverse marine environments (including through collaboration with sensor manufacturers), increasing the uptake of OneArgo products in operational services and research, strengthening European and international cooperation, and promoting the societal value of OneArgo observations.

### **1.2.5 International observing network A-DBO**

The **Atlantic-Arctic Distributed Biological Observatory (A-DBO)** is an international initiative focused on creating a comprehensive observational network for climate and environmental monitoring in the Atlantic sector of the Arctic Ocean—one of the key gateway regions to the Arctic, currently experiencing rapid environmental, climatic, and ecosystem changes. Together with the pioneering observatory in the Pacific sector of the Arctic Ocean (DBO), the DBO in the Davis Strait/Baffin Bay, and the Siberian DBO, the Atlantic DBO (A-DBO) aims to make a significant contribution to the pan-Arctic observational collaboration network. IOPAN is among the initiators of the A-DBO, with data from the long-term observational program AREX representing its contribution to the A-DBO observational network.

### **1.2.6 Argo Poland**

The **Argo Poland** Infrastructure Project - Poland's participation in the European Research Infrastructure Consortium Euro-Argo ERIC has been ongoing since 2008, representing Poland's contribution to modern oceanographic research using Argo profiling floats. The Argo system is an organized network of 4,000 autonomous, drifting research devices that profile the water column of the world's oceans. Poland's involvement in the Argo network began with the deployment of Argo floats in the Arctic in 2008, and since 2016, the measurement system has been expanded to the Baltic Sea. From 2021 to 2026, new measurements and data analyses are planned, as well as an extension of research to include polar fjords. In addition to standard floats, advanced biogeochemical Argo floats (BGC-Argo) will be utilized. The project includes innovative development activities, such as continued work on a float recovery system and improvements in data processing and quality control for Argo float data.

### **1.2.7 NCN SURETY**

The **SURETY** project aims to develop an optical method for determining surfactant activity, potentially eliminating the need for surface water sampling in the future. The project proposes the use of optical fluorescence measurements of surfactants and voltammetric measurements of surfactant activity (using the "mercury drop" method) to identify a new optical index of surfactant activity. This index, when incorporated into a mathematical formula alongside wind speed, is expected to provide better alignment with measured gas exchange velocity values than existing models that rely solely on wind speed.

### **1.2.8 NCN TWINS**

The **TWINS - When 'Together' Means 'Apart': Niche Partitioning Between Twin Zooplankton Species in a Warming Arctic** project aims to compare habitat and dietary preferences between twin zooplankton species (small and large copepods, amphipods, krill, and chaetognaths) that have different distribution centers (Arctic or boreal).

### **1.2.9 NCN LAPSE**

The **LAPSE - What Really Matters for a High-Arctic Zooplanktivorous Seabird Foraging in a Rapidly Changing Environment: Prey Size or Energy Content?** project focuses on studying the response of the population of a typical Arctic seabird, the zooplanktivorous little auk (*Alle alle*) from Svalbard, to variability in marine environmental conditions. The aim is to compare oceanographic conditions and the composition of zooplankton communities between the foraging areas of little auks nesting in five breeding colonies located in regions with diverse marine environmental conditions.

### **1.2.10 NCN DRAGONnest**

The **DRAGONnest - Investigating Biodiversity Patterns of Sea Dragons in the Arctic** project aims to conduct taxonomic and molecular identification of selected species of Kinorhyncha, belonging to the genus *Echinoderes*, collected from various Arctic regions (Spitsbergen, Eastern and Western Greenland, Alaska). To date, the genetic structure of sea dragons inhabiting Arctic regions has not been studied. The application of molecular techniques, which have become a common tool for discovering species and identifying cryptic species, sheds new light on the biodiversity of Arctic Kinorhyncha and allows for the verification of previous assumptions about the wide distribution of certain species or their potential cryptic speciation.

### **1.2.11 NCN OptiCal-Green**

The aim of the OptiCal-Green project is to understand how ongoing warming of the Arctic Ocean affects the ability of phytoplankton to utilize increased solar energy, produce organic matter, and sustain the functioning of the marine biological pump under changing environmental conditions. Organic carbon in the ocean is largely produced by phytoplankton, which, through photosynthesis, drives the biological pump and influences the optically and satellite-observable color of the water. In the Arctic Ocean, these processes are rapidly changing due to warming, sea ice retreat, and increased terrestrial inputs of dissolved organic matter. The project investigates how changing physical, chemical, and biological conditions influence phytoplankton light utilization and organic matter production. In situ measurements of optical properties, pigment concentrations, DOM fractions, and environmental parameters will allow these relationships to be quantified. The resulting data will support the development of light propagation models and algorithms for improved interpretation of satellite observations.

## 2 Research program of the AREX 2025 cruise

### 2.1 Research tasks during Leg I Tromsø – Longyearbyen (Barents and Greenland Seas, souuthern Fram Strait)

- Investigation of the structure and dynamics of the Norwegian Atlantic Current and the West Spitsbergen Current in the eastern Greenland Sea, in the Barents Sea Opening and in the southern Fram Strait (Task I.4).
- Investigation of the variability of temperature, salinity, and ocean currents on the shelf and continental slope the easterne Greenland Sea, in the Barents Sea Opening and in the southern Fram Strait (Task I.4).
- Studies of the volume and heat transport in the Norwegian Atlantic Current and the West Spitsbergen Current (Task I.4).
- Characterization of marine aerosol properties, including size distributions, concentration, optical properties, and the contribution of absorbing aerosol components to the marine aerosol composition (Task I.3).
- Assessment of the impact of aerosols on radiative fluxes at the sea surface (Task I.3).
- Meteorological conditions during the measurements (SURETY project, Task I.3).
- Determination of vertical CO<sub>2</sub> fluxes in the near-surface atmospheric layer (Task I.3).
- Determination of ship-motion corrections for wind speed and direction (SURETY project).
- Determination of CDOM properties and concentrations in the surface layer (sea surface microlayer and subsurface layer, 0–1 m) in order to identify relationships between CDOM enrichment in the sea surface microlayer and the gas exchange velocity between the ocean and the atmosphere (Task I.3, SURETY project).
- Determination of the spatial variability of pCO<sub>2</sub> and the structure of the carbonate system in surface waters (PROSPECTOR project, Task II.7).
- Characterization of the qualitative and quantitative composition and spatial distribution patterns of plankton communities (protozoan plankton and zooplankton) in the epi- and mesopelagic zones of the West Spitsbergen Current, in relation to environmental conditions (Task I.5).
- Assessment of the genetic diversity of zooplankton organisms in the Atlantic and Arctic waters of the Nordic Seas (Task I.5).
- Investigation of habitat and feeding preferences of twin zooplankton species characterized by different distribution (in the boreal or Arctic biogeographic domains) across three distinct zones of the Polar Front: the Atlantic zone, the Arctic zone, and the mixing zone (TWINS project).

## **2.2 Research tasks during Leg II Longyearbyen – Longyearbyen (nothern Fram Strait, north of Svalbard)**

- Investigation of the water masses properties structure and dynamics of the West Spitsbergen Current in the northern Fram Strait and north of Svalbard (Task I.4).
- Studies of the volume and heat transport in the West Spitsbergen Current and Fram Strait Branch of Atlantic water inflow (Task I.4).
- Characterization of marine aerosol properties, including size distributions, concentration, optical properties, and their impact on radiative fluxes at the sea surface (Task I.3).
- Meteorological conditions during the measurements (Task I.3).
- Determination of vertical CO<sub>2</sub> fluxes in the near-surface atmospheric layer (Task I.3).
- Determination of ship-motion corrections for wind speed and direction (SURETY project).
- Determination of the variability of organic matter enrichment in the sea surface microlayer (Task I.3).
- Determination of sensible and latent heat fluxes between air and ocean (Task I.3).
- Characterization of the qualitative and quantitative composition and spatial distribution patterns of plankton communities (protozoan plankton and zooplankton) in the epi- and mesopelagic zones of the West Spitsbergen Current, in relation to environmental conditions (Task I.5).
- Assessment of the genetic diversity of zooplankton organisms in the Atlantic and Arctic waters of the Nordic Seas (Task I.5).
- Investigation of habitat and feeding preferences of twin zooplankton species characterized by different centers of distribution (in the boreal or Arctic biogeographic domains) across three distinct zones of the Polar Front: the Atlantic zone, the Arctic zone, and the mixing zone (TWINS project).

## **2.3 Research tasks during Leg IIIa Longyearbyen – Longyearbyen (Hornsund)**

### **2.3.1 Marine Ecology Department - plankton (PEP)**

- Study of the qualitative and quantitative composition and distribution patterns of plankton communities in the Hornsund and its forefield in relation to environmental conditions (Task I.5).
- Determination of zooplankton abundance in the feeding grounds of little auks in the forefield of the Hornsund fjord (Task I.5).

### **2.3.2 Marine Ecology Department - plankton (PFBP)**

- Assessment of the foraging resource availability for the little auk breeding in Hornsund (HOR) using WP2 nets (180 µm) and optical methods (LOPC, UVP) (Task I.7, LAPSE and SEAPOP III projects, ZOOM).

- Investigation of carotenoid variability in key Arctic zooplankton species (Calanus copepods) and its impact on diet quality and the condition of their main predators, planktivorous (little auks), during the breeding season (Task I.7, ORANGE and ZOOM).
- Characterization of the spatial distribution and qualitative-quantitative composition of plankton communities in Hornsund (HOR) in relation to environmental factors, using both traditional methods (plankton nets, water samplers) and optical techniques (LOPC, UVP) (Task I.7, T-Trait and Bipolarity projects).

### **2.3.3 Marine Ecology Department - benthos**

- Determination of the taxonomic composition, biomass, and abundance of macro- and meiobenthos, as well as benthic biodiversity assessed using both traditional and metagenomic methods at monitoring stations in the Hornsund fjord (Task III.1).
- Determination of the taxonomic composition, biomass, and abundance of macro- and meiobenthos, as well as local-scale distribution patterns within the Hornsund fjord at 32 stations located along 5 transects, and comparison of the current community structure with data from 20 years ago (Task III.1).
- Assessment of the diversity and distribution patterns of Kinorhyncha in the Hornsund fjord, with particular emphasis on widely distributed species, based on morphological and molecular analyses (Task III.1, DRAGONnest project).
- Determination of the taxonomic composition of megafauna and analysis of spatial distribution patterns, organism behavior, and the occurrence of traces of biological activity on the seafloor surface (Lebenssspuren) in the Hornsund fjord using video methods (a downward-looking underwater camera) (Task III.1).
- Documentation of the presence of macroalgae in the Hornsund fjord in the context of their role in the organic carbon cycle (blue carbon) in fjord systems (Task III.1).

### **2.3.4 Marine Dynamics Department - physical oceanography**

- Study of thermohaline and oxygen properties and the distribution of water masses in the Hornsund fjord and the western Spitsbergen shelf area (Task I.4).

### **2.3.5 Marine Physics Department - marine optics**

- Determination of the optical properties of waters in Spitsbergen fjords in order to develop local satellite algorithms for estimating the concentrations of seawater constituents in the North Atlantic (Task II.5, SeaQuester project).
- Determination of the spectral characteristics of vertical profiles of solar irradiance attenuation in the water column and surface spectral reflectance distributions using the C-PrOPS (COPs) profiling radiometer (Biospherical) and Ramses radiometer systems (TRIOS) (Task II.5, SeaQuester and OptiCal-Green projects).

- Determination of vertical profiles (down to 200 m) of spectral absorption and beam attenuation coefficients, as well as chlorophyll-a concentration and suspended matter (acs) (Task II.5, SeaQuester and OptiCal-Green projects).
- Characterization of biogeochemical and physical properties of suspended particles and dissolved substances in fjord waters (Tasks I.2 and II.5, SeaQuester and OptiCal-Green).
- Quantitative and qualitative determination of the composition of suspended and dissolved organic and inorganic matter based on measurements of CDOM absorption and fluorescence, salinity, temperature, chlorophyll-a concentration, and other phytoplankton pigments (Tasks I.2 and II.5, SeaQuester and OptiCal-Green projects).
- Determination of primary production values in the water column using the  $^{14}\text{C}$  method in the polar region (Tasks I.2 and II.5, SeaQuester and OptiCal-Green projects).
- Establishment of empirical relationships between inherent and apparent optical properties of seawater and the concentration of particulate organic carbon in the fjord waters of western Spitsbergen (OptiCal-Green project).

### **2.3.6 Marine Chemistry and Biochemistry Department**

- Determination of contamination levels of bottom sediments, waters, and suspended matter by heavy metals, organic pollutants, and radioactive isotopes in the glacial bay of the Hornsund fjord (Task II.2).
- Determination of contamination levels of benthic organisms by heavy metals, organic pollutants, and radioactive isotopes in the glacial bay of the Hornsund fjord (Task II.2).

## **2.4 Research tasks during Leg IIIb Longyearbyen – Longyearbyen (Kongsfjorden, Isfjorden, Magdalene fjorden)**

### **2.4.1 Marine Ecology Department - plankton (PEP)**

- Characterization of the qualitative-quantitative composition and spatial distribution patterns of zooplankton communities in Kongsfjorden and its forefield in relation to environmental conditions (Task I.5).
- Investigation of habitat and feeding preferences of twin zooplankton species characterized by different centers of distribution (in the boreal or Arctic biogeographic domains) in fjord and shelf waters (TWINS project).

### **2.4.2 Marine Ecology Department - plankton (PFBP)**

- Assessment of the foraging resource availability for the little auk breeding in Kongsfjorden (KGF) and Magdalene fjorden (MG) using a WP2 zooplankton net (180  $\mu\text{m}$ ) and optical methods (LOPC, UVP) (Task I.7, LAPSE and SEAPOP III projects).
- Investigation of carotenoid variability in key Arctic zooplankton species (Calanus copepods) and its impact on diet quality and the condition of their main predators—

planktivorous SBE9/11+s (little auks)—during the breeding season in KGF and MG (Task I.7, ORANGE and ZOOM projects).

- Characterization of the spatial distribution and qualitative–quantitative composition of plankton communities in Kongsfjorden (KGF) and Isfjorden (ISF) in relation to environmental factors using both traditional methods (plankton nets, water samplers) and optical techniques (LOPC, UVP) (Task I.7; T-Trait and Bipolarity projects).

#### **2.4.3 Marine Ecology Department - benthos**

- Determination of the taxonomic composition, biomass, and abundance of macro- and meiobenthos, as well as benthic biodiversity assessed using both traditional and metagenomic methods at monitoring stations in Kongsfjorden (Task III.1).
- Determination of the taxonomic composition, biomass, and abundance of macro- and meiobenthos, and local-scale distribution patterns within Kongsfjorden, and comparison of the current community structure with data from 20 years ago (Task III.1).
- Assessment of the diversity and distribution patterns of meiofauna, with particular emphasis on Kinorhyncha, in Isfjorden and its branches, based on morphological and molecular analyses (Task III.1, DRAGONnest project).
- Determination of the taxonomic composition of megafauna and analysis of spatial distribution patterns, organism behavior, and the occurrence of traces of biological activity on the seafloor surface (Lebenssspuren) in Kongsfjorden, Isfjorden, Magdalenefjorden, and Smeerenburgfjorden using video methods (a downward-looking underwater camera) (Task III.1).
- Documentation of the presence of macroalgae in selected fjords in the context of their role in the organic carbon cycle (blue carbon) in fjord systems (Task III.1).

#### **2.4.4 Marine Dynamics Department - physical oceanography**

- Investigation of thermohaline and oxygen properties, and the distribution of water masses in Kongsfjorden and in the region of the western Spitsbergen shelf (Task I.4).

#### **2.4.5 Marine Physics Department - marine optics**

- Determination of the optical properties of waters in Spitsbergen fjords in order to develop local satellite algorithms for estimating the concentrations of seawater constituents in the North Atlantic (Task II.5, SeaQuester project).
- Determination of the spectral characteristics of vertical profiles of solar irradiance attenuation in the water column and surface spectral reflectance distributions using the C-PrOPS (COPs) profiling radiometer (Biospherical) and Ramses radiometer systems (TRIOS) (Task II.5, SeaQuester and OptiCal-Green projects).
- Determination of vertical profiles (down to 200 m) of spectral absorption and beam attenuation coefficients, as well as chlorophyll-a concentration and suspended matter (acs) (Task II.5, SeaQuester and OptiCal-Green projects).

- Characterization of the biogeochemical and physical properties of suspended particles and dissolved substances in fjord waters (Tasks I.2, II.5, SeaQuester and OptiCal-Green).
- Quantitative and qualitative determination of the composition of suspended and dissolved organic and inorganic matter based on measurements of CDOM absorption and fluorescence, salinity, temperature, chlorophyll-a concentration, and other phytoplankton pigments (Tasks I.2 and II.5, SeaQuester and OptiCal-Green projects).
- Determination of primary production values in the water column using the  $^{14}\text{C}$  method in the polar region (Tasks I.2 and II.5, SeaQuester and OptiCal-Green projects).
- Establishment of empirical relationships between inherent and apparent optical properties of seawater and the concentration of particulate organic carbon in the fjord waters of western Spitsbergen (OptiCal-Green project).

#### **2.4.6 Marine Chemistry and Biochemistry Department**

- Assessment of contamination of bottom sediments, waters, and suspended matter by heavy metals, organic pollutants, and radioactive isotopes in the glacial bays of Isfjorden and Smeerenburgfjorden (Task II.2).

### **2.5 Research tasks during Leg IV Longyearbyen - Longyearbyen (Isfjorden)**

#### **2.5.1 Marine Ecology Department and Climate and Ocean Research and Education Laboratory - ecology**

- Implementation of the project funded by Miljøvernfon, “Coastal points,” involving the repetition of coastal surveys in Isfjorden at the same locations as in 2018.
- Continuation of cooperation with Academia Sinica (Taiwan) based on a signed agreement.
- Continuation of cooperation with PGS Sopot based on a signed agreement.

### **2.6 Research tasks during Leg V Longyearbyen - Gdańsk**

#### **2.6.1 Marine Physics Department - marine optics**

- Conducting empirical measurements of the inherent optical properties of the surface layer of seawater, the basic biogeochemical properties of optically relevant water constituents in this layer, characteristics related to the trichromatic perception of water color, spectra of remote-sensing reflectance of the sea, and depth profiles of the spectral diffuse attenuation coefficient of downwelling irradiance in the water column, in selected regions of the Atlantic Ocean (open ocean and coastal zone) (Tasks I.1 and II.5).

#### **2.6.2 Marine Physics Department - marine acoustics**

- Determination of the scattering properties of biological objects and their aggregations occurring in the water column using a split-beam echosounder, and comparison of the obtained results with measurements of the physical parameters of seawater (Task II.6).

### 3 General schedule of the AREX 2025 cruise

Table 3.1. General schedule of the AREX 2025 cruise

| Leg         | Date               | Region                                                          | Cruise leader                | Comments                                           |
|-------------|--------------------|-----------------------------------------------------------------|------------------------------|----------------------------------------------------|
| <b>I</b>    | 1.07 - 19.07.2025  | LYR-LYR<br>(Norwegian and Greenland seas, southern Fram Strait) | Agnieszka Beszczyńska-Möller | Departure LYR 16:00                                |
|             | 19.07.2025         | stay in LYR (logistics)<br>crew exchange                        |                              |                                                    |
| <b>II</b>   | 19.07 - 30.07.2025 | LYR-LYR<br>(northern Fram Strait, north of Svalbard)            | Ilona Goszczko               |                                                    |
|             | 30.07.2025         | stay in LYR (logistics)<br>crew exchange                        |                              |                                                    |
| <b>IIIa</b> | 30.07 - 12.08.2025 | LYR-LYR (Hornsund)                                              | Katarzyna Grzelak            | Departure LYR 1.08.25 18:00                        |
| <b>IIIb</b> | 12.08 - 22.08.2025 | LYR-LYR (Kongsfjorden, Isfjorden, Magdalenefjord)               | Katarzyna Grzelak            | Leg limited to Isfjorden due to technical problems |
|             | 22.08.2025         | stay in LYR (logistics)<br>crew exchange                        |                              |                                                    |
| <b>IV</b>   | 22.08 - 27.08.2025 | LYR-LYR (Isfjorden)                                             | Jan Marcin Węsławski         |                                                    |
|             | 27.08.2025         | stay in LYR (logistics)<br>crew exchange                        |                              |                                                    |
| <b>V</b>    | 27.08 - 08.09.2025 | LYR - Gdańsk                                                    | Śławomir Woźniak             |                                                    |

## 4 AREX 2025 cruise itinerary

*Time given as Local Time (CEST)*

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 July  | Arrival of the team in LYR at 10:00 LT. Embarkation, trip to the town. Drill alarm at 14:00. Organizational meeting at 18:30. Assignment of watch duties and discussion of the work plan. Due to an unfavorable forecast for the following day, the departure was postponed until 2 July.                                                                                                                                                                                                                                                 |
| 2 July  | Anchorage in LYR. The forecast for the Svalbard region was very unfavorable (sea state up to 8 B, waves over 3 m). A decision was made to remain at anchor until the end of the day, with a new forecast to be checked by the morning of 03 July. Two test casts were carried out in Adventfjorden. A problem occurred with the old (repaired) pylon—no communication with the CTD probe. The pylon was replaced with a new one. The deck unit was also replaced with a new one. After the replacement, the system was fully operational. |
| 3 July  | Weighed anchor at 08:00 LT. Transit to the beginning of section V2. Moderate weather conditions, 4–5 B, waves over 2 m, decreasing. Strong swell. Decision to reduce cruising speed to 5–6 knots due to strong ship rolling (at the same time, no conditions for operations if arriving earlier at the section).                                                                                                                                                                                                                          |
| 4 July  | Transit along section V2. Start of measurements at station V38 at 08:00 LT. Good weather, 3 B, waves 1–1.5 m, swell.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5 July  | Completion of measurements on section V2 at 08:30 LT. Transit to section K. Start of measurements on section K from station K-3 at 18:20 LT. Continuation of measurements on section K. Good weather, 2–3 B, waves up to 1 m.                                                                                                                                                                                                                                                                                                             |
| 6 July  | Continuation of measurements on section K. Stations K2 to K9. Good weather, 2–3 B, waves up to 1 m, moderate swell.                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 7 July  | Continuation of measurements on section K. Stations K10 to K15. Deployment of the CoreArgo float after station K12 at 14:23 LT at position 75°02.776'N, 008°26.803'E. Good weather, sea state 2–3 B, waves up to 1 m, moderate swell.                                                                                                                                                                                                                                                                                                     |
| 8 July  | Stop of measurements at station K18 due to high waves (up to 2 m) at around 12:00 LT. Storm avoidance at minimal speed in the vicinity of the station while waiting for an improvement in conditions. Decision to skip section O and proceed directly to the western end of section N.                                                                                                                                                                                                                                                    |
| 9 July  | Resumption of measurements at station K18 at 00:20 LT. Completion of measurements on section K at 03:40 LT. Transit to section N. Start of measurements at station N-15 at 14:10 LT. Good weather, 3 B, waves approx. 1 m. Continuation of measurements on section N. Stations N-15 to N-13.                                                                                                                                                                                                                                              |
| 10 July | Continuation of measurements on section N. Stations N-12 to N-6. Moderate weather, approx. 3–4 B, waves 1–1.5 m. Increasing wave height during the night.                                                                                                                                                                                                                                                                                                                                                                                 |
| 11 July | Continuation of measurements on section N. Stations N-5 to N1. Good weather, approx. 2–3 B, waves 0.5–1 m.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12 July | Continuation of measurements on section N. Stations N1P to N3P. Deterioration of weather; around noon approx. 4 B, wind waves up to 1.5 m. After station N3P, measurements were interrupted due to high waves and a decision was made to enter Hornsund. Transit to Hornsund. Stop in drift at the entrance to Hansbukta beyond the sill. Transit to the anchorage in Gåshamna. Anchoring. Visit of the polar station team. Borrowing of tools for repairs on Oceania.                                                                    |
| 13 July | Weighed anchor at approx. 08:30 LT. Transit past the Polish Polar Station, return of the borrowed tools. Departure from Hornsund at approx. 10:00 LT. Transit to section N and resumption of measurements from station N5 at 10:45 LT. Completion of measurements on section N at station N4P at 13:40. Transit to section S. Good weather, 2–3 B, but with a high and increasing swell exceeding 2 m. Due to the swell, a decision was made to stay overnight in a sheltered bay at the entrance to Bellsund.                            |
| 14 July | Departure to section S at approx. 09:00 LT and start of measurements at station S-2 at 10:00 LT. Strong swell, approx. 1–1.5 m, decreasing. Continuation of measurements on section S up to station S6. Good weather, 3–4 B, later approx. 3 B, moderate swell.                                                                                                                                                                                                                                                                           |
| 15 July | Continuation of measurements on section S. Stations S6 to S12. Very good weather, approx. 1–2 B, waves 0.5 m.                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 16 July | Continuation of measurements on section S from station S12 to S17. Good weather, approx. 3–4 B, waves 0.5–1 m. Completion of measurements on section S at ???. Transit to section Z. En route, avoidance of an ice field extending east of Z14.                                                                                                                                                                                                                                                                                           |
| 17 July | Transit to section Z, avoidance of the ice field during the night. Start of measurements at station Z14 at 05:30. Continuation of measurements to station Z11. Upon reaching the position of station Z10,                                                                                                                                                                                                                                                                                                                                 |

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | a decision was made to interrupt measurements due to high waves (over 2 m). Storm avoidance in the vicinity of Z10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 18 July | Due to persistent high waves of 2–2.5 m, at 01:30 LT a decision was made to proceed to the eastern stations of section Z. Storm avoidance was carried out until 09:00 LT in the vicinity of station Z4. Because of the continuing high waves (2–2.5 m) and a forecast indicating no possibility of resuming operations within the next 5–6 hours, a decision was made to terminate measurements on section Z and transit to LYR. Arrival in LYR at approximately 19:00 LT. Anchorage. Disembarkation of two crew members.                                                                                                                                                                                                                                                                                                                                                              |
| 19 July | Anchorage in LYR. Exchange of the scientific team (departure of three persons, arrival of two persons). Arrival of two crew members. Cancellation of the flight of one scientific team member. Refueling from a bunker vessel. Berthing at the quay at 19:30 LT. Due to the postponement of the arrival of one person until 21 July, a decision was made to depart from LYR and complete section Z before returning to LYR. Very good weather, 1–2 B, sunny.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 20 July | Departure from LYR at 00:00 LT. Transit to section Z and start of measurements at station Z1 at 07:00 LT. Continuation of measurements on section Z from station Z1 to Z10. Very good weather, 2–3 B, sunny, wave height <0.5 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 21 July | Completion of measurements at station Z10 at 03:10 LT. Transit to LYR. Exchange of one scientific team member (delayed arrival). Battery replacement and LADCP calibration ashore. Departure from anchorage at 19:30 LT, with a planned arrival at section EB2 at 07:30 LT. At 20:00 LT, a meeting with the scientific team and selected ship crew (bridge and engine room) was held to present plans for the coming hours. Very good weather: 1 B, partly cloudy with light drizzle. Cruising speed 9.3 kn.                                                                                                                                                                                                                                                                                                                                                                           |
| 22 July | Start of measurements on section EB2 at 07:30 LT, from station EB2-1 to EB2-6. Very good weather, 1 B, wave height <0.5 m, slight to moderate swell, sunny. After stations EB2-1 and EB2-1p, a microplastic net tow was carried out (ship speed reduced to 2 kn); otherwise, transit speed was up to 6 kn due to short distances between stations. In the afternoon, the wind increased from the west to 4 kn, 2 B; overcast, with reduced ship motion.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 23 July | Continuation of measurements on section EB2 from station EB2-6p to station EB2-10. Very good weather, approx. 2 B; wind W–NW, 5 kn; wave height <0.5 m; almost no ship motion; overcast. In the morning, calm conditions, 0 B, no ship motion. At 12:00 LT (at station EB2-9), the marginal ice zone became visible on the horizon. After completing station EB2-10 at 18:30 LT, a decision was made to terminate the section and move to the western part of section EX, along the ice edge. Foggy conditions. Cruising speed approx. 8 kn.                                                                                                                                                                                                                                                                                                                                           |
| 24 July | Start of measurements on section EX at 00:20 LT, from station EX8p. Good weather, 2–3 B; wave height approx. 0.5 m; no significant ship motion; overcast. To the west, the ice edge was located at a distance of 1–2 NM. At 09:00 LT, loose sea-ice floes prevented reaching the planned position of station EX6; after rerouting, the station was carried out 0.5 NM to the east, with the vessel oriented port side to the waves to allow drifting toward the SE. The next station was performed in a similar way, while subsequent stations were completed without obstacles. Wind and waves increased during the day, but conditions remained good: 3–4 B, partly cloudy, westerly wind 14 kn. Completion of measurements on section EX at 19:30 LT, followed by a plankton/microplastic net tow and the start of transit to section NB (approx. 12 h) via Smeerenburgfjorden.     |
| 25 July | Start of measurements on section NB at 08:00 LT, from station NB1. Good weather, 3–4 B; wind N–NW, 13 kn; wave height approx. 0.5 m; overcast with drizzle. Station NB6 was repeated due to missing LADCP data (CTD casts 143 and 144), with strong drift toward the S–SE. At 19:30 LT, measurements were terminated at station NB10 due to reaching an ice field drifted by NW winds. A plankton/microplastic net tow was carried out, followed by transit to section WB (approx. 40 NM).                                                                                                                                                                                                                                                                                                                                                                                             |
| 26 July | Avoidance of the ice edge and individual ice floes; measurements began only at station WB4 (80°17.2'N) at 00:35 LT. After the station, a plankton/microplastic net tow was conducted. Good weather: 3–4 B; wave height <0.5 m; overcast; NW wind 11 kn. Completion of section WB at 06:30 LT. Transit through Smeerenburgfjorden (approx. 40 NM = 5–6 h, cruising speed 6 kn) to the beginning of section Y; start of measurements at 11:30 LT, stations Y1 to Y12.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 27 July | Continuation of measurements on section Y. Completion of measurements at 01:35 LT at station Y13, just before the edge of the drifting ice field. Start of transit toward section EX, station EX9. Very good weather: 3 B; wave height <0.5 m; overcast. Straight-line distance 55 NM; with ice avoidance, estimated at up to 70 NM (approx. 10 h). Ice was drifting east of the planned station; at 11:30 LT, a decision was made to head south, bypassing the marginal ice zone, toward station EB2-11. Due to the eastward shift of the ice edge (station EB2-9p), the measurement plan was modified and a new section, EB3, was initiated, deviating toward the SW (heading 215°) from section EB2 (approximately parallel to the ice edge, at a safe maneuvering distance). Very good weather: 2 B; wind 4 kn; fog ranging from slight to dense near the ice edge; partly cloudy. |

|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 28 July  | Continuation of measurements on section EB3, stations from EB3-4 to EB3-10. Good to very good weather: 4 B decreasing to 3 B; swell from 08:00 LT; overcast. At 12:00 LT, the distance to the ice edge (visible on the horizon) was approximately 1 NM. After the final CTD station, a plankton/microplastic net tow was conducted. Completion of measurements at 16:30 LT. Transit toward Isfjorden, with a planned surface plankton/microplastic net tow before entering the fjord (around 05:00 LT).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 29 July  | Transit to Isfjorden. At 05:00 LT, plankton/microplastic net tow. At 10:00 LT, anchoring in the vicinity of Bjørndalen. At 13:30 LT, relocation to an anchorage closer to Longyearbyen. From 14:15 LT, shore transport by dinghy was available, with return scheduled for 16:00 LT or after the planned refueling from the bunker vessel at 18:00 LT. Completion of refueling at 20:15 LT and return of the team on board (by dinghy). Very good weather, 2 B, wave height <0.5 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 30 July  | Anchorage. Disembarkation of five crew members, with the first transfer to the airport at 11:20 LT and the next at 14:30 LT. Arrival of nine persons and handover of duties to the leader of Leg III of the cruise. Berthing at the quay at 22:00 LT (until 06:15 LT on 31 July) to take on freshwater and load equipment. The chief engineer began the winch engine replacement, first removing the damaged unit and then installing the new one. Repair works continued until morning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 31 July  | Winch engine repair works continued. At approximately 14:00 LT, it became clear that additional parts were required, as the engine failure had damaged the entire electrical circuit. Attempts were undertaken to obtain the necessary components from local shops in Longyearbyen. In the evening, the chief engineer suspended the work—the failure proved too complex to be resolved without the assistance of a qualified electrician. The bridge contacted the nearby vessel <i>Nordsel</i> to request assistance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1 August | At 08:00 LT, the electrician was picked up from <i>Nordsel</i> . At approximately 12:00 LT, another visit to town was made to obtain additional electrical components. At around 16:00 LT, the repair was successfully completed: the starboard-side system was restored, and the port-side system—previously operational but also affected by the failure—was repaired. The electrician was returned, and at approximately 18:00 LT the vessel departed and transited toward Hornsund. During the transit, weather was moderately good, with strong winds of 4–5 B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2 August | At 06:20 LT, CTD profiling began along section Rm1–Rm6. At each station, a full-depth CTD profile from the surface to the bottom was carried out. From 10:40 LT, plankton and optical studies were conducted at station H1/AUK1. During preparation, it was discovered that the LOPC was not functioning. Contact was made with Emilia Trudnowska, responsible for the LOPC, and a decision was taken to perform three (instead of one) up-and-down UVP camera profiles in the 0–50 m layer at stations originally planned for LOPC measurements. In addition, intermediate stations (hereafter designated with a “p”) were added on transects where the LOPC had been planned for towing. After completing sampling and optical measurements, seabed imaging was conducted. Due to unfavorable weather forecasts and a short weather window in the Hornsund forefield, a decision was made to carry out work on only two (instead of four) key transects. Transit to station AUK13 followed, and at 17:30 LT plankton and optical studies began at the “little auk foraging ground.” Zooplankton sampling continued at subsequent stations along the transect: AUK14, AUK15, and AUK16. Between these stations, additional intermediate stations (AUK13p, AUK14p, and AUK15p) were established, where CTD and UVP profiles were conducted. Completion of work at station AUK16 at 01:30 LT. Due to persistently unfavorable forecasts, a decision was made not to continue to the westernmost station of the transect, H7/AUK18. Wind 5 B, sea state 2–3. |
| 3 August | At 03:15 LT, work began at station N4, designated as a potential future monitoring site within the ADBO network. CTD profiling, zooplankton net tows, and optical measurements were conducted. Equipment for primary production (PP) measurements was deployed. Completion of work at 10:30 LT, followed by transit to the next “little auk” transect. At 12:15 LT, work began at station AUK9, where plankton studies were carried out. Plankton sampling and optical measurements continued at stations AUK10 and AUK11/H6, where benthic samples were also collected. At the final station of the transect, AUK12, very strong winds and currents prevented UVP profiling. Water sampling with the rosette was also not completed, as the hydraulic hose of the starboard-side crane ruptured, causing hydraulic fluid leakage and contaminating the WP2 plankton net. Completion of work at the station at 02:30 LT. Strong winds and waves exceeding 1.5 m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4 August | After 03:00 LT, the vessel entered Gåshamna and remained at anchor until 08:00 LT. Increasing wind gusts and wave conditions prevented the planned hydrological profiling along the fjord axis (R0–R13) scheduled for that day. Given the prevailing conditions (winds 6–8 B), a decision was made to proceed further into the fjord. At 10:30 LT, work began in Sammarinvågen at benthic stations along transect E, sequentially at stations E6, E5, E4, E1, and E2. Completion of work at 00:40 LT, followed by transit to Brepollen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 August  | Ok 02:30 LT, start of CTD and UVP measurements on the hydrographic section from station R13 toward the fjord mouth. Weather conditions (wind up to 9 B) allowed work to continue only as far as station R4; at R4, UVP profiles were not carried out due to high waves and strong current. Completion of work at approximately 07:30 LT and return into Brepollen. At 11:00 LT, start of work at station HB1-opt (later designated HBO). Due to its proximity to the glacier, a full set of biological-optical-hydrographic investigations was conducted. Benthic samples were collected, a Nemisto core was taken, and zooplankton samples were collected. Optical measurements were then carried out at station R13. Plankton and benthos sampling and optical measurements continued at station H3. In the evening, benthic samples were collected at the monitoring station HB1. Completion of work at 23:40 LT. A decision was made to check weather conditions outside Brepollen.                                                                                                                                                                                                                                  |
| 6 August  | Slight improvement in weather conditions allowed work to continue outside Brepollen. At 00:00 LT, optical measurements were carried out at station R9, followed by zooplankton sampling at the monitoring station H4. Due to persistent ship motion, UVP measurements were not conducted. From 03:00 to 05:30 LT, work was completed at the remaining stations of the hydrographic section (R3, R2, R1, and R0), CTD only (no UVP due to weather conditions). Transit into Burgerbukta to gain shelter from the wind. Four stations were planned at increasing distance from the glacier front (BRO to BR3). At BRO and BR1, CTD profiles were carried out and the camera was deployed; at BR2, no work could be completed due to increasing wind and inability to hold anchor. Station BR3 was ultimately cancelled. Transit back to Brepollen to shelter from the wind. At 14:40 LT, start of benthic sampling at stations along transect G, in the sequence G5, G4, G2, and G1. Completion of work at 22:10 LT and transit to Adriabukta for the night. Anchorage. Wind 6–7 B, gusting to 9 B.                                                                                                                        |
| 7 August  | In the morning, an attempt was made to conduct work at the monitoring station HB2. However, the rope anchor did not hold and, due to persistently unfavorable weather conditions, the vessel returned into Brepollen. Around noon, benthic sampling began at stations along transect F, sequentially at F4, F1, F2, and F3. Strong drift at the last station. Difficulties with reliable anchoring; in many cases, holding position at the station took more time than the work itself. Completion of work at 20:00 LT. Overnight anchorage in Adriabukta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8 August  | At 04:00 LT, start of work at station E3/R8. Optical measurements were carried out and benthic samples were collected. Further work continued at station D3 and at the monitoring benthic station HB2. At 11:30 LT, work began at stations in the glacial bay Körberbukta (HK1, HK2, HK3). Seabed imaging was conducted, macrofauna samples were collected, and sediment samples were taken for biogeochemical analyses. Due to the stony seabed, a Nemisto core was not collected (successful only at station HK2). Each station concluded with a dredge haul. Completion of work at 20:00 LT. Work continued. At 21:15 LT, zooplankton sampling and optical measurements began at the monitoring station H2, followed by an attempt to locate the mooring in Hansbukta. However, due to excessive wave conditions and inability to approach closer to the glacier, the attempt was unsuccessful. At 00:30 LT, work began at the monitoring benthic station HB3.                                                                                                                                                                                                                                                        |
| 9 August  | After 03:00 LT, the vessel entered Gåshamna and anchored in the vicinity of station C4. At 09:30 LT, work began at this station, but due to the stony seabed it was not possible to collect benthic samples. Transit to station C3; however, anchoring was again unsuccessful. Transit into Burgerbukta to shelter from the wind and completion of CTD profiles and seabed imaging at stations not completed previously, i.e., BR2 and BR3. From 15:20 LT, continuation of benthic work at station D1. Weather conditions still did not allow departure and operations in the central or outer fjord. Return to Burgerbukta once more, this time into the eastern branch. From 18:30 to 00:00 LT, CTD profiling and seabed imaging were carried out at stations BRE00, BRE0, BRE1, BRE2, and BRE3. Continuation of work on transects D and C.                                                                                                                                                                                                                                                                                                                                                                            |
| 10 August | From 01:00 LT, benthic work at station D4, and from 03:10 LT continuation at station C3. Unsuccessful attempts to collect three Van Veen grabs (two deployments were successful). At 05:10 LT, work at the combined optical-benthic station C2/R5, and from 08:00 LT benthic sampling at station C1. Transit to station B5; however, after nearly 1.5 hours of anchoring attempts, a decision was made to move to the next combined benthic-optical station, B3/R3. From 13:30 LT, benthic work at station B1. Due to the very stony seabed, box-core sampling was not possible. Station B1 is located near the Polish Polar Station and Hansbukta. At approximately 16:00 LT two members of the University of Gdańsk ornithological team were picked up from the Hornsund station and embarked. Return to station B5, deployment of the chain anchor, and benthic sampling. Due to unfavorable weather conditions—persistently strong winds (gusting to 8–9 B) and high waves—it was not possible to continue work at the remaining planned stations (transect A at the fjord entrance). A decision was made to terminate operations in Hornsund. At 19:00 LT, departure from Hornsund and course set for Longyearbyen. |
| 11 August | At approximately 08:00 LT, arrival in Longyearbyen and anchorage. At approximately 12:00 LT, the ornithologists disembarked and were transferred to the airport. Minor repairs were carried out.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | including repairs to the davits on the starboard and port sides. Anchorage maintained until the next day.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12 August | From 12:00 to 18:00 LT, alongside at the quay. At 12:30 LT, disembarkation of one scientist, and at 15:00 LT embarkation of a new research team member. End of Leg IIIa. The planned departure from the quay at 18:00 LT was postponed to 19:30 LT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 13 August | At 11:00 LT, disembarkation of the cook and transfer ashore. At 11:30 LT, weighed anchor. Decision to remain in Isfjorden while awaiting a replacement cook. From 14:30 LT, work was carried out in the glacial bay Borebukta at stations IB1, IB2, and IB3. At each station, seabed imaging was conducted, macrofauna samples were collected, and sediment samples were taken for biogeochemical analyses. Completion of work at approximately 21:00 LT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 14 August | At 08:00 LT, work began at station ISA. Plankton samples were collected, water was taken for phytoplankton analyses, and a vertical UVP profile (0–50 m) was conducted. Station ISA is the starting point of the ISA-ISF3–BAB transect, where LOPC measurements are conducted annually. Due to the instrument failure, replacement measurements were continued using UVP (up-and-down profiles in the 0–50 m layer) at the main stations of the transect and at additional mid-point stations, i.e., ISA-p and ISF3_p. At station ISF3, in addition to plankton sampling, optical measurements were also conducted. At station BAB, seabed imaging was additionally performed and samples were collected within pilot studies for the TWINS BIS project. Completion of work at approximately 23:00 LT. Overnight anchorage in Adolfbukta.                                                                                                                  |
| 15 August | From 06:00 LT, benthic sampling at stations IA1 and IA2 and at stations IP1 and IB1_S; at the latter, a Nemisto core was also collected. At approximately 15:00 LT, completion of work and course set for Longyearbyen. At approximately 18:00 LT, embarkation of the new cook. In the meantime, a temperature sensor of one of ship's generators was damaged. For safety reasons, continuation of the cruise was not possible until the sensor was repaired. As the failure occurred in the afternoon when all supply stores in Longyearbyen were already closed, any potential repair had to be postponed until Monday, 18 August.                                                                                                                                                                                                                                                                                                                       |
| 16 August | From 08:30 LT, work at stations IY1, IY2, and IY3 in the glacial bay Ymerbukta. At 18:00 LT, start of optical measurements and zooplankton sampling at station ISK for the TWINS BIS project. From 22:00 to 23:00 LT, benthic work at station T4F for the DRAGONnest project.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 17 August | Entry into Dicksonfjorden and, from 08:00 LT, benthic work at stations along the fjord axis: ID1, IDS, and ID6. From 16:00 LT, work in Ekmanfjorden at the station located at the fjord entrance (IE3) and at the mid-fjord station IE2. Work was interrupted at IE2 due to the presence of ice; therefore, the inner station IE1 was not completed. To maximize the available time, the scientific team decided to conduct optical measurements at additional stations: Moni6, Moni5, and Moni3. Work continued until 05:00 LT.                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 18 August | At approximately 07:00 LT, anchorage in Longyearbyen. Attempts to purchase parts to repair the damaged sensor in the generator not successful, the necessary parts had to be delivered from Poland. The broken generator prevented continuation of the cruise outside Isfjorden, meaning Leg IIIb could not be implemented. A meeting of the scientific team was held to discuss the plan for the remaining days and the possibility of carrying out additional studies of interest to most teams. A station with 24-hour monitoring of the water column was proposed, involving the optical and plankton teams. Due to very unfavorable weather forecasts for virtually the entire Isfjorden, a decision was made to seek shelter deeper in the fjord and carry out measurements at station BAB. This location was also optimal for the benthos team, for the planned project related to jellyfish and their role in carbon transfer to bottom sediments. |
| 19 August | At 00:00 LT, water-column monitoring was initiated at station BAB (designated BABA for the purposes of this project). CTD and UVP profiles were carried out, optical measurements were conducted, seabed imaging was performed, and zooplankton samples were collected. CTD and UVP measurements were conducted hourly over the following 24 hours, while optical measurements and zooplankton sampling were carried out every 4 hours, i.e., at 04:00, 08:00, 12:00, 16:00, and 20:00 LT. Jellyfish collected from a dinghy in the vicinity of the vessel.                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 August | At 08:30 LT, dredging was conducted to supplement material for the jellyfish project. At 10:30 LT, benthic sampling began at station SBI1 and continued at stations SBI2 and SBI3. Completion of work at 20:00 LT. Overnight anchorage in Gipsvika.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 21 August | At 08:00 LT, seabed imaging (camera only, without CTD) was conducted in the Gipsvika area. At 09:30 LT, work began at the final benthic station of this stage, SBI4. Due to weather conditions, the vessel proceeded into Skansbukta, where from 15:00 LT cleaning of the ship and securing of equipment began. At 17:30 LT, the vessel proceeded to the roadstead in the vicinity of Longyearbyen.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

|             |                                                                                                                                                                                                                                                                                                                                                 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22 August   | At 10:15 LT, berthing alongside the quay and disembarkation of the scientific team, marking the end of leg IIIb. At 16:00 LT, embarkation of the Leg IIIC scientific team on board. At 18:00 LT, departure toward Isfjord Radio.                                                                                                                |
| 23 August   | Research activities at Isfjord Radio and Trygghamna, followed by transit to Ekmanfjorden and anchoring in Dicksonfjorden.                                                                                                                                                                                                                       |
| 24 August   | Research activities in Dicksonfjorden, followed by transit to Billefjorden and anchoring in Tempelfjorden.                                                                                                                                                                                                                                      |
| 25 August   | Research activities in Tempelfjorden, followed by transit to Grumantbyen and Colesbukta.                                                                                                                                                                                                                                                        |
| 26 August   | At 06:00 LT, arrival in Longyearbyen. At 14:00 LT, disembarkation of the Leg IV scientific team.                                                                                                                                                                                                                                                |
| 27 August   | Preparations for the start of Stage V of the AREX2025 cruise in the port of Longyearbyen; departure at 18:00 LT.                                                                                                                                                                                                                                |
| 28 August   | From 09:00 to 10:05 UTC, optical measurements and CTD profiling at station M4 followed by laboratory work and measurements in the shipboard laboratory.                                                                                                                                                                                         |
| 29 August   | From 09:00 to 09:55 UTC, optical measurements and CTD profiling at station V12. From 10:00 to 14:00 UTC, calibration of acoustic equipment at position V12, followed by laboratory work and measurements.                                                                                                                                       |
| 30 August   | Due to strong winds and high sea state, measurements at the planned station were cancelled for that day; laboratory work continued in the wet lab (calibration of laboratory bottle volumes).                                                                                                                                                   |
| 31 August   | From 09:00 to 09:32 UTC, optical measurements and CTD profiling at station IO10bis. From 10:39 to 15:20 UTC, acoustic measurements and CTD profiling along the transect from position IO10bis to position IO10 followed by laboratory work.                                                                                                     |
| 1 September | From 09:00 to 09:38 UTC, optical measurements and CTD profiling at station IO09bis. From 09:40 to 14:37 UTC, acoustic measurements and CTD profiling along the transect from position IO09bis to position IO09, followed by laboratory work.                                                                                                    |
| 2 September | From 09:05 to 09:49 UTC, optical measurements and CTD profiling at station IO08bis. From 10:43 to 15:19 UTC, acoustic measurements along the transect from position IO08bis to position IO08, followed by laboratory work.                                                                                                                      |
| 3 September | From 09:05 to 09:50 UTC, optical measurements and CTD profiling at station IO07bis. From 10:42 to 15:03 UTC, acoustic measurements along the transect from position IO07bis to position IO07, followed by laboratory work.                                                                                                                      |
| 4 September | Due to very strong winds and high sea state, measurements at the previously planned station IO06 were cancelled for that day.                                                                                                                                                                                                                   |
| 5 September | From 09:05 to 09:55 UTC, optical measurements and CTD profiling at station IO05bis. From 10:43 to 15:15 UTC, acoustic measurements along the transect from position IO05bis to position IO05, followed by laboratory work.                                                                                                                      |
| 6 September | From 09:02 to 09:40 UTC, optical measurements and CTD profiling at station IO04. From 10:05 to 14:18 UTC, acoustic measurements along the transect from position IO04 to position IO04bis, followed by laboratory work. At 15:00 UTC, after completion of all measurements, the vessel set course for the return transit to the port of Gdańsk. |
| 7 September | Transit toward the port of Gdańsk.                                                                                                                                                                                                                                                                                                              |
| 8 September | Transit toward the port of Gdańsk; at approximately 20:00 LT, the vessel berthed at the quay in the port of Gdańsk.                                                                                                                                                                                                                             |

## 5 Measurements and sampling program during AREX 2025 Leg I-II

### 5.1 General information about Leg I and II

Due to the planned (but ultimately unrealized) cruise of RV *Oceania* to the Azores, the oceanic Leg I of the AREX2025 cruise started exceptionally in Longyearbyen, Svalbard, instead of the standard departure from Tromsø along the section at the entrance to the Barents Sea (V1). For this reason, and because of the reduced working time allocated to the oceanic legs in 2025, section V1 was not carried out. Owing to unfavorable weather conditions, the departure of the vessel from LYR was also delayed by more than two days. During Leg I, measurements were conducted along the standard sections V2, K, N, and Z, while sections V1, H, and O were omitted due to insufficient available measurement time. The deterioration of weather conditions during work on section N additionally forced an interruption of measurements and sheltering in Hornsund, resulting in the loss of a further 1.5 days of measurement time.

During the oceanic Leg II, unfavorable ice conditions in the northern part of Fram Strait (eastward displacement of the ice edge, followed later in the cruise by a change in wind direction and a southward drift of the ice field) necessitated a significant shortening of the standard sections EB2, EX, Y, WB, and NB. The two northernmost sections north of Svalbard were limited to the shelf and upper continental slope zone (NB) or to the shelf only (WB). For this reason, an additional meridional section, EB3, was carried out on the return to LYR between sections EB2 and Z, following the ice edge. Weather conditions during Leg II were predominantly good to very good.

### 5.2 Detailed description of oceanographic measurements

#### *Description of measured parameters and collected samples*

The distribution of measurement stations during the oceanic leg of the AREX2025 cruise (Legs I and II) is shown in Fig. 5.1. During the oceanic legs of the AREX2025 cruise, hydrographic measurements—including pressure, temperature, salinity, dissolved oxygen concentration in seawater, and fluorescence (as a proxy for chlorophyll *a* concentration)—were carried out at 175 CTD stations along full-depth profiles, comprising 106 CTD stations during Leg I and 69 stations during Leg II. The list of stations together with a description of the measurements is presented in Table 5.2.

At 16 CTD stations, water samples for nutrient analysis were collected at standard depth levels of 2, 10, 25, 50, 75, 100, 150, 200, 400, 750, and 1000 m (depending on bottom depth). At six selected deep stations, water samples for salinity calibration were collected from two depth levels within the deep, homogeneous water layer.

### *Description of methods and measuring equipment*

Hydrographic measurements were carried out using a Sea-Bird CTD 9/11+ measuring system. The primary instrument was the “new” Sea-Bird CTD 9/11+ probe, mounted on a Sea-Bird SBE32 rosette sampler equipped with 12 Niskin bottles of 12 L capacity each. The Sea-Bird CTD 9/11+ probe was fitted with a dual (new) set of temperature and conductivity sensors (first temperature sensor: SBE3 SN4670; first conductivity sensor: SBE4 SN3342; second temperature sensor: SBE3 SN3342; second conductivity sensor: SBE4 SN3322) and a Digiquartz 410K-105 pressure sensor (SN100967).

The most recent calibration of the temperature and conductivity sensors was carried out in November/December 2024, while the pressure sensor was calibrated in May 2024. In addition, the CTD probe was equipped with a dissolved oxygen sensor (standard Sea-Bird SBE43 SN1620, calibrated in January 2025). The CTD was also connected to a SeaPoint fluorometer (SN2935) and a new Benthos PSA-916 altimeter. A mechanical bottom contact sensor (a weight on an approximately 5 m line) was also used; however, its performance was not always reliable (e.g., during strong ship motion or intense vessel drift). The specifications of the oceanographic sensors of the SBE CTD 9/11+ system used throughout the AREX2025 cruise are provided in Table 5.1.

Table 5.1 Sensor specifications used in the CTD 9/11+ system during the AREX 2024 cruise.

| CTD system SBE9/11+ (new body, new CT sensors) |        |                  |
|------------------------------------------------|--------|------------------|
| Sensor                                         | SN     | Calibration date |
| Pressure Digiquartz                            | 100967 | 8-May-24         |
| Conductivity SBE4                              | 3342   | 03-Dec-24        |
|                                                | 3322   | 03-Dec-24        |
| Temperature SBE3                               | 4670   | 26-Nov-24        |
|                                                | 2937   | 26-Nov-24        |
| Oxygen SBE43                                   | 1620   | 08-Jan-25        |
| Fluorometer Seapoint                           | 2935   | -                |

Teledyne RDI WorkHorse 300 kHz LADCP (SN 21589) was installed in a downward-looking configuration (with the acoustic transducers facing downward) and was used at every CTD station. The collected hydrographic data were stored on the CTD acquisition computer, with a backup copy saved on the same machine. Preliminary data processing was carried out on an ongoing basis, whereas the final datasets will become available after salinity measurements of the collected water samples and post-cruise calibration.

LADCP data were recorded in individual files and retrieved directly from the instrument memory after each station. Throughout the entire cruise, measurements of ocean currents in the upper ~200 m layer were also conducted underway using a vessel-mounted Acoustic Doppler Current Profiler (VM-ADCP), a Teledyne RDI Ocean Surveyor (SN 1819) operating at 150 kHz. The VM-ADCP measurements were performed in BroadBand mode with vertical bin averaging over 8 m intervals.

The CTD, VM-ADCP, and LADCP data collected during the AREX2025 cruise were subjected to standard processing procedures in accordance with the “best practice” recommendations for the respective instruments. The processed datasets, converted to NetCDF format and containing a complete set of metadata for each measurement as well as a common DOI for the combined dataset from Legs I and II of the AREX2025 cruise, will be archived in the ODIS eCUDO data repository and made publicly available after the embargo period.

During Leg I, two ARGO profiling floats were also deployed along section K near 75°N. One Core Argo float (measuring pressure, temperature, salinity, and dissolved oxygen) was deployed within the core of Atlantic Water (at 15°26'E), while the second Core Argo float was deployed in the outer (western) branch of the Atlantic Water flow (at 8°30'E). Each float deployment was preceded by a CTD cast at the deployment site to provide reference data.

Table 5.2 List of measurement stations during Legs II and III of the AREX2024 cruise. The 'CTD-LADCP' or 'CTD' measurement indicates measurements using the SBE9/11+ 9/11+ probe (with or without the LADCP mounted on the rosette, respectively).

| CTD file | Station | Water depth (m) | Date     | Time UTC | Lat (deg min N) | Lon (deg min E) | Measurement and sampling                                          |
|----------|---------|-----------------|----------|----------|-----------------|-----------------|-------------------------------------------------------------------|
| AR25_001 | T1      | 70              | 02.07.25 | 13:20    | 78 14.051       | 15 36.629       | CTD-LADCP, CTD carousel (all bottles)                             |
| AR25_002 | T2      | 70              | 02.07.25 | 14:05    | 78 14.059       | 15 36.683       | CTD-LADCP, CTD carousel (all bottles)                             |
| AR24_003 | V38     | 28              | 04.07.25 | 6:54     | 76 23.952       | 16 36.752       | CTD-LADCP, CTD carousel nutrients (2,10,25)                       |
| AR24_004 | V37     | 55              | 04.07.25 | 8:14     | 76 21.096       | 16 44.654       | CTD-LADCP                                                         |
| AR24_005 | V36     | 105             | 04.07.25 | 8:58     | 76 18.965       | 16 47.174       | CTD-LADCP                                                         |
| AR24_006 | V35     | 215             | 04.07.25 | 10:00    | 76 14.480       | 16 50.494       | CTD-LADCP                                                         |
| AR24_007 | V34     | 284             | 04.07.25 | 11:31    | 76 07.500       | 17 00.180       | CTD-LADCP                                                         |
| AR24_008 | V33     | 315             | 04.07.25 | 14:28    | 75 58.984       | 17 07.981       | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,310) |
| AR24_009 | V32     | 289             | 04.07.25 | 16:19    | 75 50.030       | 17 20.107       | CTD-LADCP                                                         |
| AR24_010 | V31     | 208             | 04.07.25 | 17:46    | 75 42.025       | 17 32.977       | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200)     |
| AR24_011 | V30     | 131             | 04.07.25 | 20:41    | 75 31.854       | 17 43.320       | CTD-LADCP                                                         |
| AR24_012 | V29     | 102             | 04.07.25 | 22:12    | 75 23.036       | 17 55.177       | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100)             |
| AR24_013 | V28     | 60              | 05.07.25 | 0:13     | 75 16.063       | 18 01.378       | CTD-LADCP                                                         |
| AR24_014 | V27     | 69              | 05.07.25 | 1:35     | 75 06.006       | 18 11.443       | CTD-LADCP                                                         |
| AR24_015 | V26     | 69              | 05.07.25 | 2:57     | 74 56.938       | 18 24.944       | CTD-LADCP                                                         |
| AR24_016 | V25     | 196             | 05.07.25 | 3:55     | 74 52.009       | 18 29.856       | CTD-LADCP                                                         |
| AR24_017 | V24     | 225             | 05.07.25 | 5:07     | 74 47.056       | 18 34.504       | CTD-LADCP                                                         |
| AR24_018 | V23     | 100             | 05.07.25 | 6:10     | 74 41.968       | 18 39.966       | CTD-LADCP                                                         |
| AR24_019 | V22     | 67              | 05.07.25 | 7:18     | 74 36.997       | 18 45.192       | CTD-LADCP                                                         |
| AR24_020 | V21     | 24              | 05.07.25 | 8:18     | 74 31.985       | 18 53.165       | CTD-LADCP                                                         |
| AR24_021 | K-3     | 151             | 05.07.25 | 16:25    | 75 00.023       | 17 59.899       | CTD-LADCP                                                         |
| AR24_022 | K-2     | 115             | 05.07.25 | 18:28    | 74 59.995       | 17 30.092       | CTD-LADCP                                                         |
| AR24_023 | K-1     | 127             | 05.07.25 | 19:50    | 75 00.084       | 17 00.143       | CTD-LADCP                                                         |
| AR24_024 | K0      | 224             | 05.07.25 | 21:17    | 74 59.976       | 16 30.233       | CTD-LADCP                                                         |
| AR24_025 | K1      | 216             | 05.07.25 | 23:23    | 75 00.006       | 16 05.048       | CTD-LADCP                                                         |
| AR24_026 | K2      | 336             | 06.07.25 | 0:28     | 75 00.036       | 15 46.950       | CTD-LADCP                                                         |
| AR24_027 | K3      | 808             | 06.07.25 | 1:45     | 74 59.987       | 15 25.565       | CTD-LADCP                                                         |
| AR24_028 | K4      | 1094            | 06.07.25 | 3:50     | 75 00.043       | 15 00.036       | CTD-LADCP                                                         |
| AR24_029 | K5      | 1510            | 06.07.25 | 9:57     | 75 00.000       | 14 22.093       | CTD-LADCP                                                         |

|          |             |      |          |       |           |            |                                                                                  |
|----------|-------------|------|----------|-------|-----------|------------|----------------------------------------------------------------------------------|
| AR24_030 | <b>K6</b>   | 1800 | 06.07.25 | 12:23 | 74 59.944 | 13 45.068  | CTD-LADCP                                                                        |
| AR24_031 | <b>K7</b>   | 1975 | 06.07.25 | 14:59 | 74 59.970 | 13 11.054  | CTD-LADCP                                                                        |
| AR24_032 | <b>K8</b>   | 2128 | 06.07.25 | 17:53 | 74 59.962 | 12 33.072  | CTD-LADCP                                                                        |
| AR24_033 | <b>K9</b>   | 2345 | 06.07.25 | 21:48 | 75 00.029 | 11 38.011  | CTD-LADCP                                                                        |
| AR24_034 | <b>K10</b>  | 2495 | 07.07.25 | 2:09  | 75 00.016 | 10. 25.070 | CTD-LADCP                                                                        |
| AR24_035 | <b>K11</b>  | 2595 | 07.07.25 | 6:10  | 75 00.011 | 09 09.743  | CTD-LADCP                                                                        |
| AR24_036 | <b>K12</b>  | 2688 | 07.07.25 | 9:47  | 75 00.119 | 08 29.818  | CTD-LADCP                                                                        |
| AR24_037 | <b>K13</b>  | 2184 | 07.07.25 | 14:29 | 74 59.929 | 07 38.984  | CTD-LADCP                                                                        |
| AR24_038 | <b>K14</b>  | 2015 | 07.07.25 | 17:16 | 74 59.978 | 06 49.782  | CTD-LADCP                                                                        |
| AR24_039 | <b>K15</b>  | 2830 | 07.07.25 | 20:30 | 74 59.963 | 06 00.017  | CTD-LADCP                                                                        |
| AR24_040 | <b>K16</b>  | 3032 | 08.07.25 | 0:40  | 74 59.941 | 04 59.785  | CTD-LADCP                                                                        |
| AR24_041 | <b>K17</b>  | 3061 | 08.07.25 | 5:38  | 74 59.948 | 03 59.924  | CTD-LADCP                                                                        |
| AR24_042 | <b>K18</b>  | 2476 | 08.07.25 | 22:28 | 75 00.036 | 02 59.491  | CTD-LADCP                                                                        |
| AR24_043 | <b>N-15</b> | 3146 | 09.07.25 | 12:05 | 76 29.930 | 00 00.103  | CTD-LADCP                                                                        |
| AR24_044 | <b>N-14</b> | 3185 | 09.07.25 | 16:15 | 76 29.964 | 00 59.952  | CTD                                                                              |
| AR24_045 | <b>N-13</b> | 3196 | 09.07.25 | 19:15 | 76 29.956 | 01 59.900  | CTD-LADCP                                                                        |
| AR24_046 | <b>N-12</b> | 2738 | 10.07.25 | 0:04  | 76 29.754 | 02 59.363  | CTD-LADCP                                                                        |
| AR24_047 | <b>N-11</b> | 2473 | 10.07.25 | 4:26  | 76 29.975 | 03 59.958  | CTD-LADCP                                                                        |
| AR24_048 | <b>N-10</b> | 2369 | 10.07.25 | 8:00  | 76 29.946 | 04 58.957  | CTD-LADCP                                                                        |
| AR24_049 | <b>N-9</b>  | 2535 | 10.07.25 | 10:56 | 76 29.905 | 05 29.900  | CTD-LADCP                                                                        |
| AR24_050 | <b>N-8</b>  | 2498 | 10.07.25 | 13:58 | 76 30.016 | 06 00.116  | CTD-LADCP                                                                        |
| AR24_051 | <b>N-7</b>  | 2543 | 10.07.25 | 17:09 | 76 30.061 | 06 30.337  | CTD-LADCP                                                                        |
| AR24_052 | <b>N-6</b>  | 2801 | 10.07.25 | 20:56 | 76 29.864 | 06 59.918  | CTD-LADCP                                                                        |
| AR24_053 | <b>N-5</b>  | 2480 | 11.07.25 | 0:47  | 76 29.868 | 07 29.292  | CTD-LADCP                                                                        |
| AR24_054 | <b>N-4</b>  | 2003 | 11.07.25 | 4:10  | 76 29.874 | 07 59.768  | CTD-LADCP                                                                        |
| AR24_055 | <b>N-3</b>  | 2255 | 11.07.25 | 6:55  | 76 29.749 | 08 29.500  | CTD-LADCP                                                                        |
| AR24_056 | <b>N-2</b>  | 2252 | 11.07.25 | 9:58  | 76 29.928 | 08 59.893  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,750, 1000,1000) |
| AR24_057 | <b>N-1</b>  | 2207 | 11.07.25 | 13:40 | 76 29.942 | 10 00.511  | CTD-LADCP                                                                        |
| AR24_058 | <b>N0</b>   | 2088 | 11.07.25 | 17:11 | 76 29.960 | 10 59.905  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,750, 1000)      |
| AR24_059 | <b>N0P</b>  | 2003 | 11.07.25 | 20:08 | 76 29.999 | 11 29.944  | CTD-LADCP                                                                        |
| AR24_060 | <b>N1</b>   | 1886 | 11.07.25 | 22:53 | 76 30.044 | 12 00.080  | CTD-LADCP                                                                        |
| AR24_061 | <b>N1P</b>  | 1731 | 12.07.25 | 1:20  | 76 30.014 | 12 29.099  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,750, 1000)      |
| AR24_062 | <b>N2</b>   | 1525 | 12.07.25 | 3:55  | 76 30.005 | 13 00.097  | CTD-LADCP                                                                        |
| AR24_063 | <b>N2P</b>  | 1240 | 12.07.25 | 6:11  | 76 30.088 | 13 29.876  | CTD-LADCP                                                                        |
| AR24_064 | <b>N3</b>   | 710  | 12.07.25 | 8:34  | 76 30.192 | 14 00.660  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,637)            |
| AR24_065 | <b>N3PP</b> | 395  | 12.07.25 | 9:57  | 76 30.020 | 14 11.810  | CTD-LADCP                                                                        |
| AR24_066 | <b>N3P</b>  | 223  | 12.07.25 | 11:07 | 76 29.920 | 14 29.609  | CTD-LADCP                                                                        |
| AR24_067 | <b>N5</b>   | 55   | 13.07.25 | 12:45 | 76 29.944 | 15 59.708  | CTD-LADCP                                                                        |
| AR24_068 | <b>N4P</b>  | 141  | 13.07.25 | 13:54 | 76 29.833 | 15 30.122  | CTD-LADCP                                                                        |
| AR24_069 | <b>N4P</b>  | 158  | 13.07.25 | 15:13 | 76 29.999 | 15 00.011  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,155)                    |
| AR24_070 | <b>S-2</b>  | 130  | 14.07.25 | 12:04 | 77 37.024 | 14 29.728  | CTD-LADCP                                                                        |
| AR24_071 | <b>S-1</b>  | 137  | 14.07.25 | 13:17 | 77 35.993 | 14 00.011  | CTD-LADCP                                                                        |
| AR24_072 | <b>S0</b>   | 140  | 14.07.25 | 14:31 | 77 35.009 | 13 30.103  | CTD-LADCP                                                                        |
| AR24_073 | <b>S1</b>   | 131  | 14.07.25 | 16:05 | 77 33.965 | 13 00.102  | CTD-LADCP                                                                        |
| AR24_074 | <b>S2</b>   | 94   | 14.07.25 | 17:29 | 77 32.989 | 12 30.134  | CTD-LADCP                                                                        |
| AR24_075 | <b>S3</b>   | 173  | 14.07.25 | 18:41 | 77 32.107 | 11 59.612  | CTD-LADCP                                                                        |
| AR24_076 | <b>S4</b>   | 278  | 14.07.25 | 20:24 | 77 31.111 | 11 30.104  | CTD-LADCP                                                                        |
| AR24_077 | <b>S5</b>   | 686  | 14.07.25 | 21:37 | 77 30.066 | 10 59.808  | CTD-LADCP                                                                        |
| AR24_078 | <b>S6</b>   | 1244 | 14.07.25 | 23:13 | 77 29.068 | 10 29.512  | CTD-LADCP                                                                        |

|          |               |      |          |       |           |           |                                                                                    |
|----------|---------------|------|----------|-------|-----------|-----------|------------------------------------------------------------------------------------|
| AR24_079 | <b>S7</b>     | 1576 | 15.07.25 | 1:20  | 77 27.871 | 10 00.110 | CTD-LADCP                                                                          |
| AR24_080 | <b>S7P</b>    | 1897 | 15.07.25 | 3:47  | 77 27.027 | 09 29.833 | CTD-LADCP                                                                          |
| AR24_081 | <b>S8</b>     | 2051 | 15.07.25 | 6:32  | 77 26.030 | 08 59.604 | CTD-LADCP                                                                          |
| AR24_082 | <b>S8P</b>    | 1299 | 15.07.25 | 9:30  | 77 25.045 | 08 29.638 | CTD-LADCP                                                                          |
| AR24_083 | <b>S9</b>     | 2306 | 15.07.25 | 11:27 | 77 23.982 | 08 00.055 | CTD-LADCP                                                                          |
| AR24_084 | <b>S9P</b>    | 3600 | 15.07.25 | 14:07 | 77 22.955 | 07 29.860 | CTD-LADCP, CTD carousel salinity (3200, 3400)                                      |
| AR24_085 | <b>S10</b>    | 2672 | 15.07.25 | 18:07 | 77 21.970 | 07 00.083 | CTD-LADCP, CTD carousel salinity (2300, 2500)                                      |
| AR24_086 | <b>S11</b>    | 2111 | 15.07.25 | 21:08 | 77 21.032 | 06 30.270 | CTD-LADCP - cast not recorded                                                      |
| AR24_087 | <b>S12</b>    | 2563 | 15.07.25 | 23:44 | 77 20.111 | 05 59.846 | CTD-LADCP                                                                          |
| AR24_088 | <b>S13</b>    | 2390 | 16.07.25 | 3:16  | 77 18.077 | 05 00.011 | CTD-LADCP                                                                          |
| AR24_089 | <b>S14</b>    | 2398 | 16.07.25 | 6:15  | 77 17.057 | 04 30.095 | CTD-LADCP                                                                          |
| AR24_090 | <b>S15</b>    | 2465 | 16.07.25 | 9:21  | 77 16.058 | 04 00.223 | CTD-LADCP                                                                          |
| AR24_091 | <b>S16</b>    | 2881 | 16.07.25 | 13:43 | 77 13.901 | 02 57.617 | CTD-LADCP                                                                          |
| AR24_092 | <b>S17</b>    | 3175 | 16.07.25 | 17:30 | 77 12.036 | 01 59.714 | CTD-LADCP, CTD carousel salinity (2850, 3050)                                      |
| AR24_093 | <b>Z14</b>    | 3058 | 17.07.25 | 3:45  | 78 02.992 | 01 29.870 | CTD-LADCP, CTD carousel salinity (2700, 2900)                                      |
| AR24_094 | <b>Z13</b>    | 2992 | 17.07.25 | 8:16  | 78 03.750 | 02 49.796 | CTD-LADCP                                                                          |
| AR24_095 | <b>Z12</b>    | 2832 | 17.07.25 | 12:36 | 78 05.108 | 04 00.282 | CTD-LADCP                                                                          |
| AR24_096 | <b>Z11</b>    | 2424 | 17.07.25 | 16:19 | 78 05.506 | 05 00.026 | CTD-LADCP                                                                          |
| AR24_097 | <b>Z1</b>     | 257  | 20.07.25 | 5:08  | 78 10.505 | 10 59.990 | CTD-LADCP                                                                          |
| AR24_098 | <b>Z2</b>     |      | 20.07.25 | 6:57  | 78 10.051 | 09 59.744 | CTD-LADCP                                                                          |
| AR24_099 | <b>Z3</b>     | 262  | 20.07.25 | 8:37  | 78 09.850 | 09 29.951 | CTD-LADCP                                                                          |
| AR24_100 | <b>Z4</b>     | 697  | 20.07.25 | 9:18  | 78 09.625 | 09 14.884 | CTD-LADCP                                                                          |
| AR24_101 | <b>Z5</b>     | 1091 | 20.07.25 | 10:30 | 78 09.420 | 09 00.016 | CTD-LADCP                                                                          |
| AR24_102 | <b>Z6</b>     | 1550 | 20.07.25 | 12:11 | 78 08.738 | 08 39.983 | CTD-LADCP                                                                          |
| AR24_103 | <b>Z7</b>     | 2167 | 20.07.25 | 14:24 | 78 08.411 | 08 10.003 | CTD-LADCP                                                                          |
| AR24_104 | <b>Z8</b>     | 3441 | 20.07.25 | 17:00 | 78 07.812 | 07 29.905 | CTD-LADCP, CTD carousel salinity (3000, 3200 m)                                    |
| AR24_105 | <b>Z9</b>     | 2242 | 20.07.25 | 20:46 | 78 06.962 | 06 39.888 | CTD-LADCP                                                                          |
| AR24_106 | <b>Z10</b>    | 2473 | 20.07.25 | 23:34 | 78 06.130 | 05 50.390 | CTD-LADCP                                                                          |
| AR24_107 | <b>EB2-1</b>  | 203  | 22.07.25 | 5:52  | 78 49.912 | 9 15.826  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,199), WP net              |
| AR24_108 | <b>EB2-1P</b> | 212  | 22.07.25 | 7:24  | 78 50.047 | 9 1.163   | CTD-LADCP                                                                          |
| AR24_109 | <b>EB2-2</b>  | 221  | 22.07.25 | 8:18  | 78 50.054 | 8 46.127  | CTD-LADCP                                                                          |
| AR24_110 | <b>EB2-2P</b> | 377  | 22.07.25 | 9:13  | 78 50.063 | 8 36.142  | CTD-LADCP                                                                          |
| AR24_111 | <b>EB2-3</b>  | 647  | 22.07.25 | 10:16 | 78 50.049 | 8 25.997  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400, 643), WP net     |
| AR24_112 | <b>EB2-3P</b> | 813  | 22.07.25 | 12:11 | 78 49.924 | 8 16.522  | CTD-LADCP                                                                          |
| AR24_113 | <b>EB2-4</b>  | 936  | 22.07.25 | 13:38 | 78 50.024 | 8 6.409   | CTD-LADCP                                                                          |
| AR24_114 | <b>EB2-4P</b> | 1045 | 22.07.25 | 15:20 | 78 49.932 | 7 51.488  | CTD-LADCP                                                                          |
| AR24_115 | <b>EB2-5</b>  | 1090 | 22.07.25 | 16:48 | 78 49.953 | 7 36.482  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,750,1000), WP net |
| AR24_116 | <b>EB2-5P</b> | 1183 | 22.07.25 | 19:01 | 78 49.936 | 7 21.650  | CTD-LADCP                                                                          |
| AR24_117 | <b>EB2-6</b>  | 1335 | 22.07.25 | 20:29 | 78 50.086 | 7 6.191   | CTD-LADCP                                                                          |
| AR24_118 | <b>EB2-6p</b> | 1537 | 22.07.25 | 22:12 | 78 50.083 | 6 52.331  | CTD-LADCP                                                                          |
| AR24_119 | <b>EB2-7</b>  | 1726 | 23.07.25 | 0:06  | 78 50.051 | 6 40.165  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,750,1000)         |
| AR24_120 | <b>EB2-7P</b> | 2019 | 23.07.25 | 2:10  | 78 50.048 | 6 24.898  | CTD-LADCP                                                                          |
| AR24_121 | <b>EB2-8</b>  | 2294 | 23.07.25 | 4:23  | 78 50.033 | 6 10.076  | CTD-LADCP                                                                          |
| AR24_122 | <b>EB2-8P</b> | 2447 | 23.07.25 | 6:42  | 78 50.062 | 5 55.122  | CTD-LADCP                                                                          |
| AR24_123 | <b>EB2-9</b>  | 2522 | 23.07.25 | 9:24  | 78 49.903 | 5 39.860  | CTD-LADCP                                                                          |
| AR24_124 | <b>EB2-9P</b> | 2564 | 23.07.25 | 11:55 | 78 49.988 | 5 24.784  | CTD-LADCP                                                                          |
| AR24_125 | <b>EB2-10</b> | 2583 | 23.07.25 | 14:26 | 78 49.980 | 5 10.013  | CTD-LADCP, CTD carousel nutrients (2,10,25,50,75,100,150,200,400,750,1000), WP net |
| AR24_126 | <b>EX8P</b>   | 2460 | 23.07.25 | 22:31 | 79 25.049 | 5 1.234   | CTD-LADCP, CTD carousel salinity (2000, 2200 m)                                    |
| AR24_127 | <b>EX8</b>    | 2202 | 24.07.25 | 1:01  | 79 24.929 | 5 30.019  | CTD-LADCP                                                                          |

|          |               |      |          |       |           |           |                                                     |
|----------|---------------|------|----------|-------|-----------|-----------|-----------------------------------------------------|
| AR24_128 | <b>EX7P</b>   | 1763 | 24.07.25 | 3:28  | 79 24.935 | 6 0.046   | CTD-LADCP                                           |
| AR24_129 | <b>EX7</b>    | 1428 | 24.07.25 | 5:37  | 79 24.998 | 6 30.451  | CTD-LADCP, WP net                                   |
| AR24_130 | <b>EX6</b>    | 1164 | 24.07.25 | 7:52  | 79 24.886 | 7 2.839   | CTD-LADCP                                           |
| AR24_131 | <b>EX5</b>    | 987  | 24.07.25 | 9:52  | 79 24.982 | 7 21.925  | CTD-LADCP, WP net                                   |
| AR24_132 | <b>EX4P</b>   | 751  | 24.07.25 | 11:23 | 79 25.039 | 7 40.352  | CTD-LADCP                                           |
| AR24_133 | <b>EX4</b>    | 474  | 24.07.25 | 12:36 | 79 25.036 | 7 55.322  | CTD-LADCP                                           |
| AR24_134 | <b>EX3P</b>   | 273  | 24.07.25 | 13:38 | 79 24.967 | 8 10.516  | CTD-LADCP                                           |
| AR24_135 | <b>EX3</b>    | 190  | 24.07.25 | 14:37 | 79 25.028 | 8 30.145  | CTD-LADCP, WP net                                   |
| AR24_136 | <b>EX2</b>    | 131  | 24.07.25 | 16:10 | 79 24.920 | 8 59.952  | CTD-LADCP                                           |
| AR24_137 | <b>EX1</b>    | 130  | 24.07.25 | 17:16 | 79 24.904 | 9 29.884  | CTD-LADCP                                           |
| AR24_138 | <b>NB1</b>    | 53   | 25.07.25 | 6:36  | 80 33.223 | 16 32.159 | CTD-LADCP                                           |
| AR24_139 | <b>NB2</b>    | 128  | 25.07.25 | 7:33  | 80 36.963 | 16 24.203 | CTD-LADCP                                           |
| AR24_140 | <b>NB3</b>    | 162  | 25.07.25 | 8:12  | 80 38.800 | 16 19.682 | CTD-LADCP, WP net                                   |
| AR24_141 | <b>NB4</b>    | 177  | 25.07.25 | 9:28  | 80 40.682 | 16 15.715 | CTD-LADCP                                           |
| AR24_142 | <b>NB5</b>    | 193  | 25.07.25 | 10:06 | 80 41.665 | 16 13.606 | CTD-LADCP                                           |
| AR24_143 | <b>NB6</b>    | 552  | 25.07.25 | 10:44 | 80 42.549 | 16 11.446 | CTD, WP net                                         |
| AR24_144 | <b>NB6</b>    | 539  | 25.07.25 | 12:00 | 80 42.491 | 16 11.138 | CTD-LADCP                                           |
| AR24_145 | <b>NB7</b>    | 637  | 25.07.25 | 12:54 | 80 43.441 | 16 9.512  | CTD-LADCP                                           |
| AR24_146 | <b>NB8</b>    | 736  | 25.07.25 | 13:53 | 80 44.414 | 16 7.364  | CTD-LADCP                                           |
| AR24_147 | <b>NB9</b>    | 965  | 25.07.25 | 15:09 | 80 45.372 | 16 5.138  | CTD-LADCP                                           |
| AR24_148 | <b>NB10</b>   | 1141 | 25.07.25 | 16:38 | 80 46.441 | 16 2.873  | CTD-LADCP                                           |
| AR24_149 | <b>WB4</b>    | 194  | 26.07.25 | 0:42  | 80 17.158 | 12 24.401 | CTD-LADCP                                           |
| AR24_150 | <b>WB3</b>    | 199  | 26.07.25 | 1:51  | 80 13.264 | 12 28.852 | CTD-LADCP, WP net                                   |
| AR24_151 | <b>WB2</b>    | 176  | 26.07.25 | 3:23  | 80 9.320  | 12 33.518 | CTD-LADCP                                           |
| AR24_152 | <b>WB1</b>    | 188  | 26.07.25 | 4:13  | 80 5.398  | 12 38.133 | CTD-LADCP                                           |
| AR24_153 | <b>Y1</b>     | 34   | 26.07.25 | 9:42  | 79 39.632 | 10 21.895 | CTD-LADCP                                           |
| AR24_154 | <b>Y2</b>     | 86   | 26.07.25 | 10:22 | 79 41.025 | 10 13.909 | CTD-LADCP                                           |
| AR24_155 | <b>Y3</b>     | 136  | 26.07.25 | 10:59 | 79 42.302 | 10 5.500  | CTD-LADCP                                           |
| AR24_156 | <b>Y4</b>     | 306  | 26.07.25 | 11:40 | 79 43.819 | 9 58.325  | CTD-LADCP                                           |
| AR24_157 | <b>Y5</b>     | 373  | 26.07.25 | 12:31 | 79 45.318 | 9 50.339  | CTD-LADCP, WP net                                   |
| AR24_158 | <b>Y6</b>     | 426  | 26.07.25 | 13:54 | 79 47.696 | 9 36.460  | CTD-LADCP                                           |
| AR24_159 | <b>Y7</b>     | 453  | 26.07.25 | 15:06 | 79 50.231 | 9 22.633  | CTD-LADCP                                           |
| AR24_160 | <b>Y8</b>     | 455  | 26.07.25 | 16:02 | 79 53.866 | 9 2.774   | CTD-LADCP                                           |
| AR24_161 | <b>Y9</b>     | 479  | 26.07.25 | 17:13 | 79 57.316 | 8 42.514  | CTD-LADCP                                           |
| AR24_162 | <b>Y10</b>    | 496  | 26.07.25 | 18:57 | 80 0.912  | 8 22.490  | CTD-LADCP, CTD carousel microplastic (497, 497 m)   |
| AR24_163 | <b>Y11</b>    | 508  | 26.07.25 | 20:18 | 80 4.384  | 8 2.057   | CTD-LADCP                                           |
| AR24_164 | <b>Y12</b>    | 534  | 26.07.25 | 21:27 | 80 8.008  | 7 41.490  | CTD-LADCP                                           |
| AR24_165 | <b>Y13</b>    | 556  | 26.07.25 | 23:10 | 80 11.034 | 7 23.590  | CTD-LADCP                                           |
| AR24_166 | <b>EB3-1</b>  | 2560 | 27.07.25 | 13:26 | 78 49.900 | 5 26.734  | CTD-LADCP, CTD carousel salinity (2400, 2200 m)     |
| AR24_167 | <b>EB3-2</b>  | 2417 | 27.07.25 | 16:24 | 78 45.821 | 5 11.937  | CTD-LADCP                                           |
| AR24_168 | <b>EB3-3</b>  | 2322 | 27.07.25 | 19:05 | 78 41.748 | 4 57.088  | CTD-LADCP                                           |
| AR24_169 | <b>EB3-4</b>  | 2342 | 27.07.25 | 21:07 | 78 37.709 | 4 42.556  | CTD-LADCP                                           |
| AR24_170 | <b>EB3-5</b>  | 2342 | 27.07.25 | 23:18 | 78 33.613 | 4 28.472  | CTD-LADCP                                           |
| AR24_171 | <b>EB3-6</b>  | 2335 | 28.07.25 | 1:35  | 78 29.525 | 4 13.984  | CTD-LADCP                                           |
| AR24_172 | <b>EB3-7</b>  | 2291 | 28.07.25 | 4:16  | 78 25.445 | 4 0.185   | CTD-LADCP                                           |
| AR24_173 | <b>EB3-8</b>  | 2322 | 28.07.25 | 6:36  | 78 21.313 | 3 45.681  | CTD-LADCP                                           |
| AR24_174 | <b>EB3-9</b>  | 1911 | 28.07.25 | 9:21  | 78 17.218 | 3 31.598  | CTD-LADCP                                           |
| AR24_175 | <b>EB3-10</b> | 2765 | 28.07.25 | 11:39 | 78 13.151 | 3 17.515  | CTD-LADCP, CTD carousel microplastic (2761, 2761 m) |

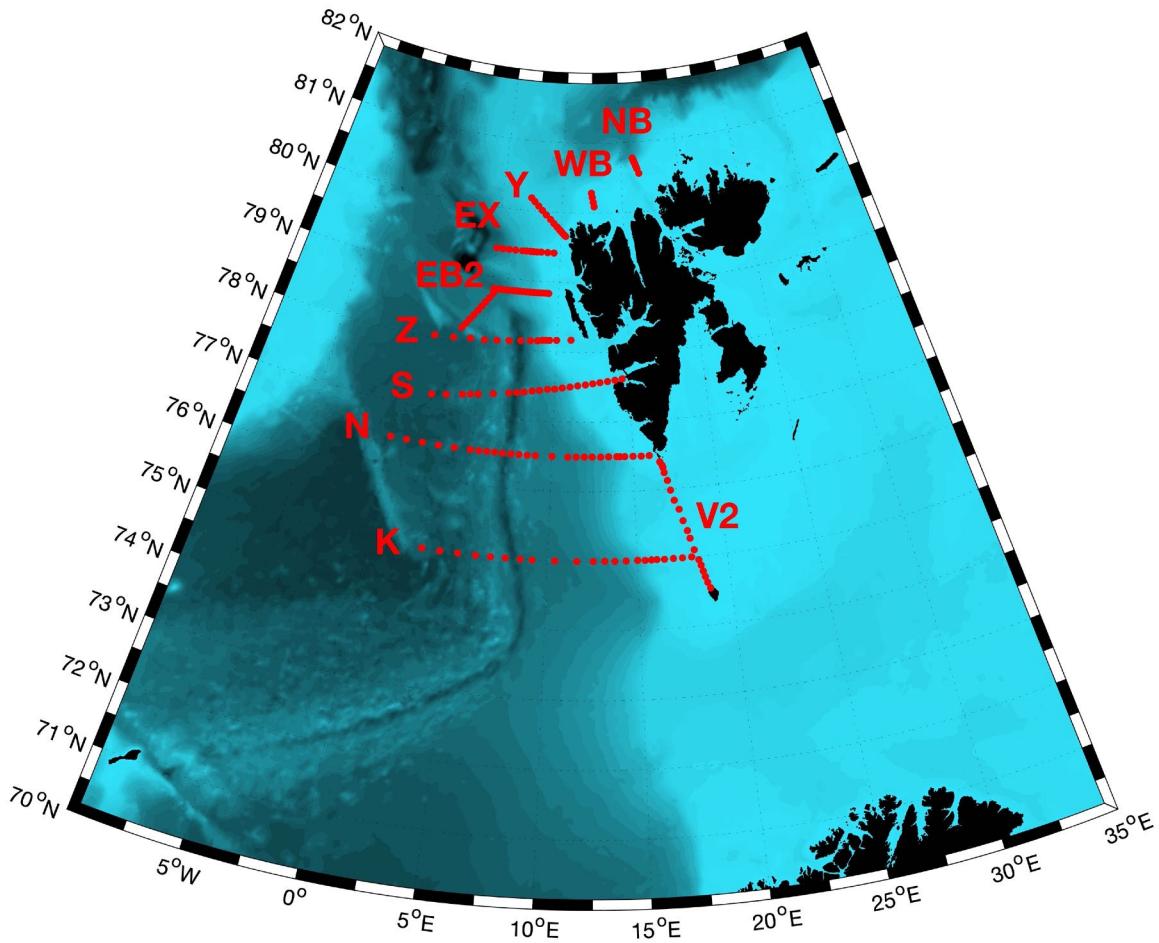



Fig. 5.1 Map of measurement stations and CTD sections during Leg I (sections V2, K, N, S, and Z) and Leg II (sections EB2, EX, Y, WB, NB, and EB3) of the AREX2025 cruise.

### 5.3 Detailed description of aerosol and meteorological measurements

Measurements were carried out using the following research equipment: an Optical Particle Counter (OPC-N3), two gas analyzers (LI-COR 7200 and LI-COR 7500), two acoustic anemometers (GILL), an automatic meteorological station (Vaisala WXT563), a Microtops II sun photometer, an autonomous ship motion and tilt detection system (Ellipse LPMS-1G1P-RS232), and a stationary aspirator (Dadolab Gemini).

The measured parameters included: aerosol particle size distribution in the near-surface atmospheric layer, concentration of marine aerosol, atmospheric CO<sub>2</sub> and H<sub>2</sub>O concentrations and fluxes, wind speed and direction, air temperature and humidity, and ship motion using an inertial motion detection system. Measurements were conducted in continuous mode. Under favorable meteorological conditions (cloud-free sky), aerosol optical thickness measurements were also performed.

Meteorological conditions during Legs I and II of the AREX2025 cruise are shown on Figs 5.2 and 5.3.

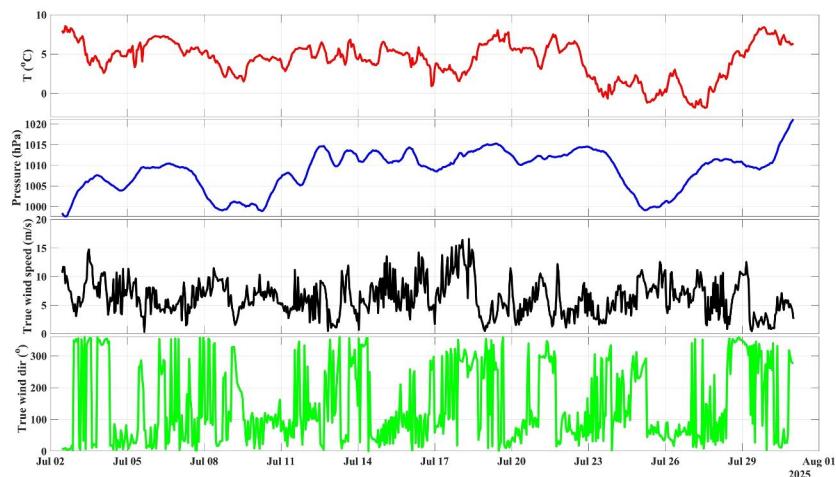
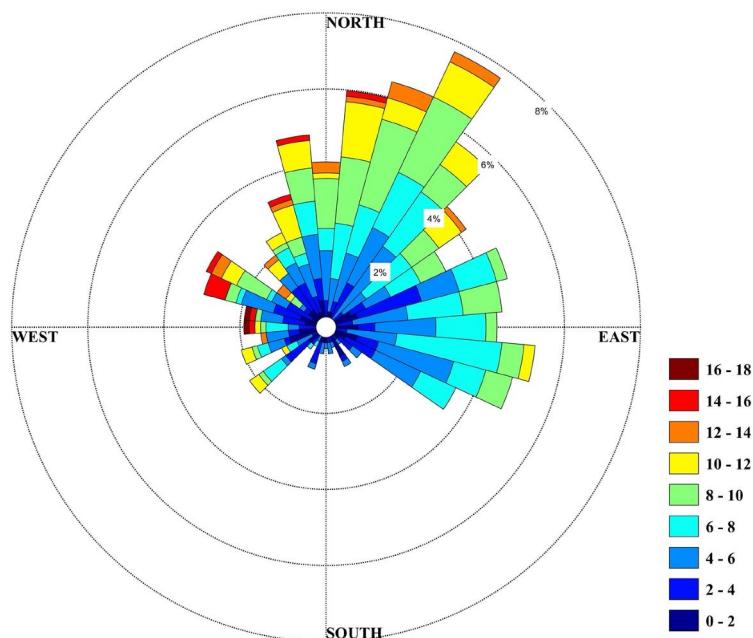




Fig. 5.2 Meteorological conditions during Legs I and II of the AREX2025 cruise



Rys. 5.3 Wind rose based on measurements collected during Legs I and II of the AREX2025 cruise.

Long-term atmospheric air sampling was conducted using the Dadolab Gemini aspirator. Samples were collected on filters, and two independent sets of samples were obtained.

The first set consisted of samples for inorganic ions (cations and anions). This series of filters will be used for the identification and quantification of the major water-soluble ionic species in marine aerosols (e.g.,  $\text{Na}^+$ ,  $\text{K}^+$ ,  $\text{Mg}^{2+}$ ,  $\text{Ca}^{2+}$ ,  $\text{NH}_4^+$ ,  $\text{Cl}^-$ ,  $\text{NO}_3^-$ ,  $\text{SO}_4^{2-}$ ). These data will provide information on the chemical composition of airborne particles over the ocean, supporting studies of air-sea exchange, aerosol transport pathways, and the role of marine aerosols in atmospheric chemistry and climate-related processes.

A parallel series of filters was dedicated to the collection of airborne microplastic particles. These filters will subsequently be subjected to laboratory analyses, including advanced microscopic and spectroscopic techniques (FTIR, Raman spectroscopy), to determine polymer types, particle morphology, and size distributions. The resulting dataset will contribute to the

development of this emerging field of research on marine microplastics, with particular emphasis on assessing atmospheric transport, deposition processes, and potential impacts on marine ecosystems.

The combined dataset from inorganic ion chemistry and microplastic identification will provide a unique and comprehensive characterization of marine aerosol composition. This methodology ensures comparability with international monitoring efforts and will support interdisciplinary research linking aerosol sources, transformation processes, and impacts on climate and the marine environment.

At selected stations, seawater samples were also collected to assess the concentration of suspended microplastics in the water column.

Table 5.3 List of seawater sampling stations for microplastic content analysis.

| Number | Date       | Time  | Station |
|--------|------------|-------|---------|
| 1      | 22.07.2025 | 06:50 | EB2-1   |
| 2      | 22.07.2025 | 08:42 | EB2-8P  |
| 3      | 23.07.2025 | 16:00 | EB2-10  |
| 4      | 23.07.2025 | 17:00 | BLANK   |
| 5      | 24.07.2025 | 17:45 | EX1     |
| 6      | 24.07.2025 | 17:30 | EX1     |
| 7      | 23.07.2025 | 18:20 | BLANK   |
| 8      | 25.07.2025 | 18:01 | NB10    |
| 9      | 26.07.2025 | 01:07 | WB4     |
| 10     | 26.07.2025 | 04:30 | WB1     |
| 11     | 26.07.2025 | 19:28 | Y10     |
| 12     | 26.07.2025 | 19:15 | Y10     |
| 13     | 28.07.2025 | 14:07 | EB3-10  |
| 14     | 28.07.2025 | 14:00 | EB3-10  |
| 15     | 28.07.2025 | 14:30 | BLANK   |

All collected data will be deposited on the network drive at the Institute of Oceanology, Polish Academy of Sciences (IOPAN). The filter samples and seawater samples will be subjected to laboratory analyses, and the resulting data will also be deposited on the network drive.

## 5.4 Detailed description of sea surface microlayer (SML) measurements

### *Description of methods and measuring equipment*

Sampling was conducted at 22 stations (Fig. 5.4) between 1 and 19 July 2025. The exact locations of the stations are provided in the corresponding table. Subsurface samples were collected from a depth of 0–1 m using a 10 L bucket, while samples of the surface microlayer (SML) were collected using a stainless-steel Garrett screen (WP net) with dimensions of 45 × 45 cm and a mesh size of 18 (wire thickness 0.36 mm and mesh opening 1 mm), yielding an approximate sampled SML thickness of 500 µm.

Part of the collected samples was used for the determination of pH, salinity, and temperature (WTW multimeter), which were measured onboard immediately after sampling. Samples intended for absorbance, fluorescence, and SAS analyses were placed unfiltered into containers and stored at  $-20^{\circ}\text{C}$  until analysis. During sampling, sea surface salinity and temperature at a depth of 0.6–0.9 m were measured using a CTD probe (Sea-Bird SBE 9/11+). Meteorological observations (wind speed and direction) were carried out throughout the cruise. Sampling was performed only under sea state conditions of 0–4 B (wind speed below  $9\text{ m s}^{-1}$ ) and in the absence of visible oil slicks.

#### *Description of measured parameters and collected samples*

##### *Absorption measurements*

Absorbance measurements were performed using a Perkin Elmer Lambda 650 spectrophotometer (Perkin Elmer, Waltham, Massachusetts, USA) with a 10 cm optical path length. Spectra were recorded over the wavelength range 240–700 nm, using Milli-Q water as a reference.

Based on the measured absorption spectra, several absorption-related parameters were calculated:

- a) Ratios of CDOM absorption coefficients at wavelengths 250 and 365 nm,  $a_{\text{CDOM}}(250)/a_{\text{CDOM}}(365)$  (E2:E3), and at 450 and 650 nm,  $a_{\text{CDOM}}(450)/a_{\text{CDOM}}(650)$  (E4:E5). These ratios are used to track changes in the relative molecular size and aromaticity of CDOM molecules (as molecular size and aromaticity increase, E2:E3 and E4:E5 values decrease).
- b) The spectral slope coefficient S, calculated over different spectral ranges, serving as a proxy for CDOM composition, including the relative contribution of fulvic versus humic acids and molecular weight.
- c) The ratio of two spectral slopes, S<sub>275–295</sub> and S<sub>350–400</sub>, known as the slope ratio (SR), which is correlated with the molecular weight (MW) of DOM and photochemically induced changes in the molecular weight of organic matter.

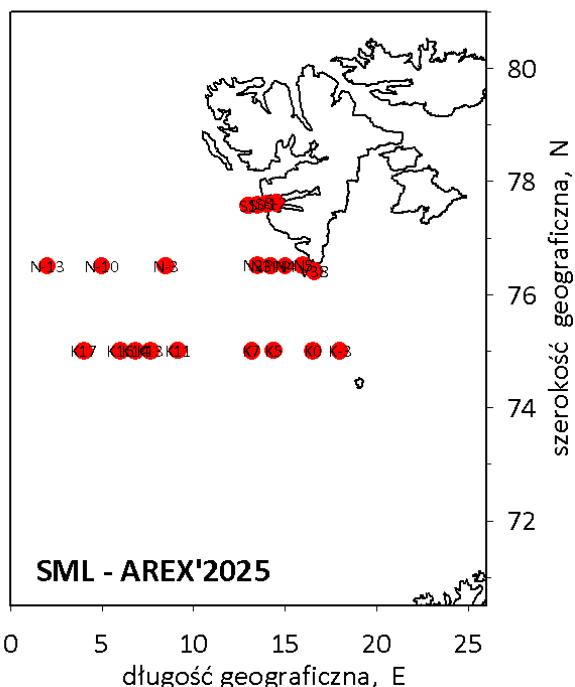
##### *Fluorescence measurements*

Fluorescence excitation–emission matrix (EEM) spectra were obtained using a scanning spectrophluorometer SFS-Go (Laser Diagnostics SA, Tallinn, Estonia) with a 1 cm optical path length. A series of emission scans (240–570 nm, 5 nm resolution) was measured over an excitation wavelength range of 225–350 nm at 5 nm intervals.

Analysis of EEM fluorescence spectra of seawater is based on the interpretation of emission bands used to derive several fluorescence parameters:

- a) Fluorescence intensities of the main FDOM components A, C, M, and T (in R.U.), serving as indicators of FDOM concentration.
- b) Relative contributions of the main FDOM fluorophores, reflecting changes in fluorophore composition.

c) The humification index (HIX), defined as the ratio of fluorescence intensity in the blue region of the spectrum (435–480 nm) to that in the UV-A region (330–346 nm) at an excitation wavelength of 255 nm. HIX reflects structural changes associated with humification, leading to increased aromaticity (C:H ratio) and molecular weight.


The calculated spectral indices (both absorption- and fluorescence-based) allow for the assessment of structural changes and compositional variability of FDOM, as well as for the quantification of allochthonous and autochthonous FDOM fractions along the investigated transect.

*SAS (surface-active substances) measurements*

Surface-active substances were determined electrochemically using the hanging mercury drop electrode method by means of alternating current (AC) voltammetry, employing a portable potentiostat (PalmSens, Houten, the Netherlands).

Table 5.4 List of sampling stations used for the analysis of surface microlayer enrichment.

| Number | Date      | Time     | Station | Latitude | Longitude |
|--------|-----------|----------|---------|----------|-----------|
| 1      | 7-4-2025  | 06:56:00 | V38     | 76.4021  | 16.6007   |
| 2      | 7-4-2025  | 16:25:00 | K-3     | 75       | 17.9988   |
| 3      | 7-5-2025  | 19:00:00 | K0      | 75.0001  | 16.5164   |
| 4      | 7-6-2025  | 11:50:00 | K5      | 75.0048  | 14.3782   |
| 5      | 7-6-2025  | 15:02:00 | K7      | 74.9998  | 13.1825   |
| 6      | 7-7-2025  | 08:10:00 | K11     | 75.0049  | 9.155     |
| 7      | 7-7-2025  | 14:12:00 | K13     | 74.999   | 7.6496    |
| 8      | 7-7-2025  | 17:16:00 | K14     | 74.9961  | 6.8301    |
| 9      | 7-7-2025  | 20:30:00 | K15     | 74.9997  | 6.0013    |
| 10     | 7-8-2025  | 06:13:00 | K17     | 75.0036  | 4.008     |
| 11     | 7-9-2025  | 19:10:00 | N-13    | 76.4998  | 1.998     |
| 12     | 7-10-2025 | 08:00:00 | N-10    | 76.499   | 4.9823    |
| 13     | 7-11-2025 | 07:00:00 | N-3     | 76.4989  | 8.4924    |
| 14     | 7-12-2025 | 06:15:00 | N2P     | 76.5065  | 13.4988   |
| 15     | 7-12-2025 | 10:00:00 | N3PP    | 76.5008  | 14.2023   |
| 16     | 7-13-2025 | 12:35:00 | N5      | 76.5117  | 15.9866   |
| 17     | 7-13-2025 | 15:10:00 | N4      | 76.5013  | 15.0111   |
| 18     | 7-14-2025 | 12:00:00 | S-2     | 77.6165  | 14.5046   |
| 19     | 7-14-2025 | 13:00:00 | S-1     | 77.6     | 14.0007   |
| 21     | 7-14-2025 | 14:30:00 | S0      | 77.5834  | 13.501    |
| 22     | 7-14-2025 | 16:00:00 | S1      | 77.5679  | 13.0023   |



Rys. 5.4 Map of the sampling stations for the analysis of enrichment of the sea surface microlayer with organic matter during the AREX2025 Leg I.

#### *Further processing of data and collected samples*

The samples are currently stored in freezers at the laboratories of the Institute of Oceanology, Polish Academy of Sciences (IOPAN). Laboratory analyses will be carried out in January 2026. The results will be used to derive relationships between the enrichment of the sea surface microlayer (SML) with organic matter and the rate of gas exchange across the air-sea interface. These relationships are required for the implementation of the statutory research program as well as for the SURETY project.

## **5.5 Detailed description of biological measurements**

#### *Description of methods and measuring equipment*

Zooplankton investigations during the oceanic legs of the AREX cruise were conducted following methods recommended for marine zooplankton ecological studies, with procedures and tools adapted to the specific objectives of the research. Sampling was carried out at fixed research stations selected from the network of hydrographic stations of the main cruise program. A total of 40 primary and 20 supplementary zooplankton stations were designated, distributed along 6 (V, K, O, S, EB) and 3 (Z, EX, Y) measurement sections, respectively.

At each station, zooplankton samples were collected while the vessel was drifting (and only rarely while at anchor). Sampling was performed using vertical hauls from the upper 200 m of the water column (the epipelagic layer), following a stratified approach, with hauls taken from depth layers defined in relation to the local thermohaline structure of the water column.

Based on previous hydrographic studies, three characteristic layers are typically distinguished in the thermohaline structure of the study region, and zooplankton samples were collected accordingly from: (i) the surface layer, characterized by nearly uniform temperature and salinity; (ii) the layer of sharp gradients in temperature and salinity (the thermo- and halocline); and (iii) the layer extending below these gradients down to the lower boundary of the epipelagic zone, characterized by gradual and uniform changes in temperature and salinity with depth. The vertical extent of these layers was determined individually at each station based on real-time temperature and salinity profiles provided by the physical oceanography team.

The primary sampling gear used in the study was a WP-2 zooplankton net equipped with a filtering mesh of 0.180 mm. The net was fitted with a mechanical closing system, which sealed the net by tightening a rope loop in the upper, non-filtering part of the net. This system consisted of a closing line attached to the net, a release mechanism, a Nansen-type mechanical closing device mounted on the main wire to which the net was attached, and a messenger weight that activated the closing mechanism.

For supplementary tasks, as well as as backup equipment in the event of damage to the primary net, a WP-3 plankton net with a 1.0 mm mesh and a Juday-type plankton net with a 0.064 mm mesh could also be used.

#### *Description of measured parameters and collected samples*

The primary samples collected to obtain research material for the main scientific objective - namely, to characterize the qualitative and quantitative composition and spatial distribution patterns of zooplankton in the epipelagic layer of the West Spitsbergen Current - were zooplankton samples collected using stratified vertical hauls with a WP-2 net equipped with a 0.180 mm mesh, at a predefined network of research stations. After collection, the zooplankton samples were transferred from the net cod end to sample containers (HDPE screw-cap bottles) and immediately preserved with a 4% formaldehyde solution in seawater, buffered with borax.

The sample containers were labeled using waterproof markers, with labels written both on the outer wall of the bottle and on the cap. Each label included a unique identification number and a set of basic metadata (station name, name and vertical extent of the sampled water layer, sampling date, and net type). In addition, each container included an internal label (a rectangular piece of technical tracing paper approximately 3 × 5 cm in size written in pencil and containing the essential metadata). Bottles with preserved and labeled samples were placed in dedicated transport boxes designed for this purpose.

In total, 115 zooplankton faunal samples were collected during the cruise to address the primary research objective, from 39 research stations. Of these, 107 samples were collected in a stratified manner, and 8 samples were collected from the entire water column. The latter were collected out of necessity due to malfunction of the net closing mechanism under difficult weather conditions and high sea state, which caused strong vessel motion.

Zooplankton samples intended for the establishment of a genetic reference database of planktonic organisms were collected using a WP-2 net (180 µm mesh) in vertical hauls from the 50–0 m water layer at selected plankton stations. Whenever possible, two zooplankton samples were collected at each station: one for genetic analyses and one for faunistic studies. The collected zooplankton was placed in individually labeled containers (bottles) and preserved either in 96% ethanol (for genetic analyses) or in a 4% formaldehyde solution in seawater buffered with borax (for faunistic analyses). In total, 8 samples were collected at 4 stations for the purpose of genetic diversity analyses.

Table 5.5. List of sampling stations. “TWC” – Total Water Column, a sample unintentionally collected from the entire water column. Abandoned – a station at which no samples were collected due to unfavorable working conditions (strong winds, high sea state). Code /A – faunistic sample. Code /G – genetic sample.

| No. | Station | Date       | Time  | Deg | Min    | Deg | Min    | Bottom | Secchi | Sample | Code | Depth    | Depth  | Comment |
|-----|---------|------------|-------|-----|--------|-----|--------|--------|--------|--------|------|----------|--------|---------|
|     |         | UTC        | UTC   | Lat | Lat    | Lon | Lon    | [m]    | disc   | nr     |      | from [m] | to [m] |         |
| 1   | V34     | 04.07.2025 | 11:51 | 76  | 7,563  | 17  | 0,603  | 284    | 7      | 25001  | /A   | 200      | 0      | TWC     |
| 2   | V34     | 04.07.2025 | 11:51 | 76  | 7,563  | 17  | 0,603  | 284    | 7      | 25002  | /A   | 40       | 18     |         |
| 3   | V34     | 04.07.2025 | 11:51 | 76  | 7,563  | 17  | 0,603  | 284    | 7      | 25003  | /A   | 18       | 0      |         |
| 4   | V31     | 04.07.2025 | 18:10 | 75  | 42,223 | 17  | 32,861 | 208    | 12     | 25004  | /A   | 200      | 0      | TWC     |
| 5   | V31     | 04.07.2025 | 18:10 | 75  | 42,223 | 17  | 32,861 | 208    | 12     | 25005  | /A   | 50       | 10     |         |
| 6   | V31     | 04.07.2025 | 18:10 | 75  | 42,223 | 17  | 32,861 | 208    | 12     | 25006  | /A   | 10       | 0      |         |
| 7   | V29     | 04.07.2025 | 22:29 | 75  | 23,137 | 17  | 56,564 | 102    | 11     | 25007  | /A   | 195      | 80     |         |
| 8   | V29     | 04.07.2025 | 22:29 | 75  | 23,137 | 17  | 56,564 | 102    | 11     | 25008  | /A   | 80       | 25     |         |
| 9   | V29     | 04.07.2025 | 22:29 | 75  | 23,137 | 17  | 56,564 | 102    | 11     | 25009  | /A   | 25       | 0      |         |
| 10  | K-3     | 05.07.2025 | 16:41 | 75  | 0,18   | 17  | 59,604 | 151    | 14     | 25010  | /A   | 145      | 35     |         |
| 11  | K-3     | 05.07.2025 | 16:41 | 75  | 0,18   | 17  | 59,604 | 151    | 14     | 25011  | /A   | 35       | 10     |         |
| 12  | K-3     | 05.07.2025 | 16:41 | 75  | 0,18   | 17  | 59,604 | 151    | 14     | 25012  | /A   | 10       | 0      |         |
| 13  | KO      | 05.07.2025 | 21:31 | 75  | 0,001  | 16  | 30,832 | 224    | 7      | 25013  | /A   | 200      | 0      | TWC     |
| 14  | KO      | 05.07.2025 | 21:31 | 75  | 0,001  | 16  | 30,832 | 224    | 7      | 25014  | /A   | 55       | 15     |         |
| 15  | KO      | 05.07.2025 | 21:31 | 75  | 0,001  | 16  | 30,832 | 224    | 7      | 25015  | /A   | 15       | 0      |         |
| 16  | K4      | 06.07.2025 | 04:10 | 75  | 0,353  | 15  | 0,092  | 1094   | 5,5    | 25016  | /A   | 200      | 45     |         |
| 17  | K4      | 06.07.2025 | 04:10 | 75  | 0,353  | 15  | 0,092  | 1094   | 5,5    | 25017  | /A   | 45       | 15     |         |
| 18  | K4      | 06.07.2025 | 04:10 | 75  | 0,353  | 15  | 0,092  | 1094   | 5,5    | 25018  | /A   | 15       | 0      |         |
| 19  | K4      | 06.07.2025 | 04:10 | 75  | 0,353  | 15  | 0,092  | 1094   | 5,5    | 25001  | /G   | 200      | 0      |         |
| 20  | K4      | 06.07.2025 | 04:10 | 75  | 0,353  | 15  | 0,092  | 1094   | 5,5    | 25002  | /G   | 200      | 0      |         |
| 21  | K7      | 06.07.2025 | 15:11 | 75  | 0,02   | 13  | 11,175 | 1975   | 12     | 25019  | /A   | 200      | 50     |         |
| 22  | K7      | 06.07.2025 | 15:11 | 75  | 0,02   | 13  | 11,175 | 1975   | 12     | 25020  | /A   | 50       | 15     |         |
| 23  | K7      | 06.07.2025 | 15:11 | 75  | 0,02   | 13  | 11,175 | 1975   | 12     | 25021  | /A   | 15       | 0      |         |
| 24  | K10     | 07.07.2025 | 02:21 | 75  | 0,092  | 10  | 25,181 | 2495   | 4,5    | 25022  | /A   | 200      | 0      | TWC     |
| 25  | K10     | 07.07.2025 | 02:21 | 75  | 0,092  | 10  | 25,181 | 2495   | 4,5    | 25023  | /A   | 50       | 20     |         |
| 26  | K10     | 07.07.2025 | 02:21 | 75  | 0,092  | 10  | 25,181 | 2495   | 4,5    | 25024  | /A   | 20       | 0      |         |
| 27  | K16     | 08.07.2025 | 00:54 | 75  | 0,105  | 5   | 0,302  | 3032   | 5      | 25025  | /A   | 200      | 60     |         |
| 28  | K16     | 08.07.2025 | 00:54 | 75  | 0,105  | 5   | 0,302  | 3032   | 5      | 25026  | /A   | 60       | 20     |         |
| 29  | K16     | 08.07.2025 | 00:54 | 75  | 0,105  | 5   | 0,302  | 3032   | 5      | 25027  | /A   | 20       | 0      |         |
| 30  | K16     | 08.07.2025 | 00:54 | 75  | 0,105  | 5   | 0,302  | 3032   | 5      | 25003  | /G   | 200      | 0      |         |

|    |       |            |       |    |        |    |        |      |    |       |    |     |    |           |
|----|-------|------------|-------|----|--------|----|--------|------|----|-------|----|-----|----|-----------|
| 31 | K16   | 08.07.2025 | 00:54 | 75 | 0,105  | 5  | 0,302  | 3032 | 5  | 25004 | /G | 200 | 0  |           |
| 32 | N-11  | 10.07.2025 | 04:35 | 76 | 30,039 | 3  | 59,941 | 2473 | 16 | 25028 | /A | 200 | 37 |           |
| 33 | N-11  | 10.07.2025 | 04:35 | 76 | 30,039 | 3  | 59,941 | 2473 | 16 | 25029 | /A | 37  | 15 |           |
| 34 | N-11  | 10.07.2025 | 04:35 | 76 | 30,039 | 3  | 59,941 | 2473 | 16 | 25030 | /A | 15  | 0  |           |
| 35 | N-2   | 11.07.2025 | 10:18 | 76 | 30,051 | 8  | 59,794 | 2252 | 9  | 25031 | /A | 200 | 40 |           |
| 36 | N-2   | 11.07.2025 | 10:18 | 76 | 30,051 | 8  | 59,794 | 2252 | 9  | 25032 | /A | 40  | 20 |           |
| 37 | N-2   | 11.07.2025 | 10:18 | 76 | 30,051 | 8  | 59,794 | 2252 | 9  | 25033 | /A | 20  | 0  |           |
| 38 | NO    | 11.07.2025 | 17:36 | 76 | 29,658 | 10 | 59,154 | 2088 | 6  | 25034 | /A | 200 | 20 |           |
| 39 | NO    | 11.07.2025 | 17:36 | 76 | 29,658 | 10 | 59,154 | 2088 | 6  | 25035 | /A | 20  | 0  |           |
| 40 | N2    | 12.07.2025 | 04:04 | 76 | 29,987 | 13 | 0,171  | 1525 | 7  | 25036 | /A | 200 | 0  | TWC       |
| 41 | N2    | 12.07.2025 | 04:04 | 76 | 29,987 | 13 | 0,171  | 1525 | 7  | 25037 | /A | 20  | 10 |           |
| 42 | N2    | 12.07.2025 | 04:04 | 76 | 29,987 | 13 | 0,171  | 1525 | 7  | 25038 | /A | 10  | 0  |           |
| 43 | N3    | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 44 | N4    | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 45 | S3    | 14.07.2025 | 18:57 | 77 | 32,181 | 11 | 59,635 | 173  | 9  | 25039 | /A | 165 | 0  | TWC       |
| 46 | S3    | 14.07.2025 | 18:57 | 77 | 32,181 | 11 | 59,635 | 173  | 9  | 25040 | /A | 18  | 0  |           |
| 47 | S6    | 14.07.2025 | 23:22 | 77 | 29,263 | 10 | 29,41  | 1244 | 6  | 25041 | /A | 200 | 0  | TWC       |
| 48 | S6    | 14.07.2025 | 23:22 | 77 | 29,263 | 10 | 29,41  | 1244 | 6  | 25042 | /A | 28  | 0  |           |
| 49 | S8    | 15.07.2025 | 06:50 | 77 | 26,092 | 9  | 0,386  | 2051 | 7  | 25043 | /A | 200 | 45 |           |
| 50 | S8    | 15.07.2025 | 06:50 | 77 | 26,092 | 9  | 0,386  | 2051 | 7  | 25044 | /A | 45  | 20 |           |
| 51 | S8    | 15.07.2025 | 06:50 | 77 | 26,092 | 9  | 0,386  | 2051 | 7  | 25045 | /A | 20  | 0  |           |
| 52 | S10   | 15.07.2025 | 18:16 | 77 | 21,859 | 7  | 0,491  | 2672 | 12 | 25046 | /A | 200 | 40 |           |
| 53 | S10   | 15.07.2025 | 18:16 | 77 | 21,859 | 7  | 0,491  | 2672 | 12 | 25047 | /A | 40  | 15 |           |
| 54 | S10   | 15.07.2025 | 18:16 | 77 | 21,859 | 7  | 0,491  | 2672 | 12 | 25048 | /A | 15  | 0  |           |
| 55 | S16   | 16.07.2025 | 13:58 | 77 | 13,894 | 2  | 58,106 | 2881 | 14 | 25049 | /A | 200 | 0  | TWC       |
| 56 | S16   | 16.07.2025 | 13:58 | 77 | 13,894 | 2  | 58,106 | 2881 | 14 | 25050 | /A | 40  | 20 |           |
| 57 | S16   | 16.07.2025 | 13:58 | 77 | 13,894 | 2  | 58,106 | 2881 | 14 | 25051 | /A | 20  | 0  |           |
| 58 | Z13   | 17.07.2025 | 08:23 | 78 | 3,634  | 2  | 49,517 | 2992 | 15 | 25052 | /A | 200 | 35 |           |
| 59 | Z13   | 17.07.2025 | 08:23 | 78 | 3,634  | 2  | 49,517 | 2992 | 15 | 25053 | /A | 35  | 10 |           |
| 60 | Z13   | 17.07.2025 | 08:23 | 78 | 3,634  | 2  | 49,517 | 2992 | 15 | 25054 | /A | 10  | 0  |           |
| 61 | Z2    | 20.07.2025 | 07:11 | 78 | 10,097 | 9  | 59,573 | -    | 9  | 25055 | /A | 200 | 45 |           |
| 62 | Z2    | 20.07.2025 | 07:11 | 78 | 10,097 | 9  | 59,573 | -    | 9  | 25056 | /A | 45  | 10 |           |
| 63 | Z2    | 20.07.2025 | 07:11 | 78 | 10,097 | 9  | 59,573 | -    | 9  | 25057 | /A | 10  | 0  |           |
| 64 | Z4    | 20.07.2025 | 09:28 | 78 | 9,711  | 9  | 14,581 | 697  | 5  | 25058 | /A | 200 | 40 |           |
| 65 | Z4    | 20.07.2025 | 09:28 | 78 | 9,711  | 9  | 14,581 | 697  | 5  | 25059 | /A | 40  | 10 |           |
| 66 | Z4    | 20.07.2025 | 09:28 | 78 | 9,711  | 9  | 14,581 | 697  | 5  | 25060 | /A | 10  | 0  |           |
| 67 | Z7    | 20.07.2025 | 14:38 | 78 | 8,451  | 8  | 10,031 | 2167 | 14 | 25061 | /A | 200 | 25 |           |
| 68 | Z7    | 20.07.2025 | 14:38 | 78 | 8,451  | 8  | 10,031 | 2167 | 14 | 25062 | /A | 25  | 10 |           |
| 69 | Z7    | 20.07.2025 | 14:38 | 78 | 8,451  | 8  | 10,031 | 2167 | 14 | 25063 | /A | 10  | 0  |           |
| 70 | Z10   | 20.07.2025 | 23:46 | 78 | 6,036  | 5  | 50,357 | 2473 | 11 | 25064 | /A | 200 | 20 |           |
| 71 | Z10   | 20.07.2025 | 23:46 | 78 | 6,036  | 5  | 50,357 | 2473 | 11 | 25065 | /A | 20  | 10 |           |
| 72 | Z10   | 20.07.2025 | 23:46 | 78 | 6,036  | 5  | 50,357 | 2473 | 11 | 25066 | /A | 10  | 0  |           |
| 73 | EB2-1 | 22.07.2025 | 06:02 | 78 | 49,872 | 9  | 15,763 | 199  | 7  | 25067 | /A | 200 | 40 |           |
| 74 | EB2-1 | 22.07.2025 | 06:02 | 78 | 49,872 | 9  | 15,763 | 199  | 7  | 25068 | /A | 40  | 10 |           |
| 75 | EB2-1 | 22.07.2025 | 06:02 | 78 | 49,872 | 9  | 15,763 | 199  | 7  | 25069 | /A | 10  | 0  |           |
| 76 | EB2-3 | 22.07.2025 | 10:55 | 78 | 50,339 | 8  | 27,266 | 647  | 6  | 25070 | /A | 200 | 60 |           |

|     |        |            |       |    |        |    |        |      |    |       |    |     |    |           |
|-----|--------|------------|-------|----|--------|----|--------|------|----|-------|----|-----|----|-----------|
| 77  | EB2-3  | 22.07.2025 | 10:55 | 78 | 50,339 | 8  | 27,266 | 647  | 6  | 25071 | /A | 60  | 25 |           |
| 78  | EB2-3  | 22.07.2025 | 10:55 | 78 | 50,339 | 8  | 27,266 | 647  | 6  | 25072 | /A | 25  | 0  |           |
| 79  | EB2-5  | 22.07.2025 | 16:59 | 78 | 49,859 | 7  | 37,471 | 1092 | 7  | 25005 | /G | 200 | 0  |           |
| 80  | EB2-5  | 22.07.2025 | 16:59 | 78 | 49,859 | 7  | 37,471 | 1092 | 7  | 25006 | /G | 200 | 0  |           |
| 81  | EB2-5  | 22.07.2025 | 16:59 | 78 | 49,859 | 7  | 37,471 | 1092 | 7  | 25073 | /A | 200 | 45 |           |
| 82  | EB2-5  | 22.07.2025 | 16:59 | 78 | 49,859 | 7  | 37,471 | 1092 | 7  | 25074 | /A | 45  | 10 |           |
| 83  | EB2-5  | 22.07.2025 | 16:59 | 78 | 49,859 | 7  | 37,471 | 1092 | 7  | 25075 | /A | 10  | 0  |           |
| 84  | EB2-7  | 23.07.2025 | 00:20 | 78 | 50,169 | 6  | 40,864 | 1725 | 7  | 25076 | /A | 200 | 50 |           |
| 85  | EB2-7  | 23.07.2025 | 00:20 | 78 | 50,169 | 6  | 40,864 | 1725 | 7  | 25077 | /A | 50  | 10 |           |
| 86  | EB2-7  | 23.07.2025 | 00:20 | 78 | 50,169 | 6  | 40,864 | 1725 | 7  | 25078 | /A | 10  | 0  |           |
| 87  | EB2-10 | 23.07.2025 | 14:40 | 78 | 49,923 | 5  | 9,094  | 2583 | 10 | 25007 | /G | 200 | 0  |           |
| 88  | EB2-10 | 23.07.2025 | 14:40 | 78 | 49,923 | 5  | 9,094  | 2583 | 10 | 25008 | /G | 200 | 0  |           |
| 89  | EB2-10 | 23.07.2025 | 14:40 | 78 | 49,923 | 5  | 9,094  | 2583 | 10 | 25079 | /A | 200 | 25 |           |
| 90  | EB2-10 | 23.07.2025 | 14:40 | 78 | 49,923 | 5  | 9,094  | 2583 | 10 | 25080 | /A | 25  | 10 |           |
| 91  | EB2-10 | 23.07.2025 | 14:40 | 78 | 49,923 | 5  | 9,094  | 2583 | 10 | 25081 | /A | 10  | 0  |           |
| 92  | EB2-14 | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 93  | EX9    | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 94  | EX8P   | 23.07.2025 | 22:49 | 79 | 25,137 | 5  | 1,471  | 2455 | 13 | 25082 | /A | 200 | 30 |           |
| 95  | EX8P   | 23.07.2025 | 22:49 | 79 | 25,137 | 5  | 1,471  | 2455 | 13 | 25083 | /A | 30  | 10 |           |
| 96  | EX8P   | 23.07.2025 | 22:49 | 79 | 25,137 | 5  | 1,471  | 2455 | 13 | 25084 | /A | 10  | 0  |           |
| 97  | EX7    | 24.07.2025 | 05:50 | 79 | 24,816 | 6  | 31,156 | 1428 | 15 | 25085 | /A | 200 | 55 |           |
| 98  | EX7    | 24.07.2025 | 05:50 | 79 | 24,816 | 6  | 31,156 | 1428 | 15 | 25086 | /A | 55  | 20 |           |
| 99  | EX7    | 24.07.2025 | 05:50 | 79 | 24,816 | 6  | 31,156 | 1428 | 15 | 25087 | /A | 20  | 10 |           |
| 100 | EX7    | 24.07.2025 | 05:50 | 79 | 24,816 | 6  | 31,156 | 1428 | 15 | 25088 | /A | 10  | 0  |           |
| 101 | EX5    | 24.07.2025 | 10:10 | 79 | 24,981 | 7  | 22,624 | 987  | 14 | 25089 | /A | 200 | 35 |           |
| 102 | EX5    | 24.07.2025 | 10:10 | 79 | 24,981 | 7  | 22,624 | 987  | 14 | 25090 | /A | 35  | 15 |           |
| 103 | EX5    | 24.07.2025 | 10:10 | 79 | 24,981 | 7  | 22,624 | 987  | 14 | 25091 | /A | 15  | 0  |           |
| 104 | EX3    | 24.07.2025 | 14:47 | 79 | 25,025 | 8  | 30,509 | 187  | 6  | 25092 | /A | 190 | 50 |           |
| 105 | EX3    | 24.07.2025 | 14:47 | 79 | 25,025 | 8  | 30,509 | 187  | 6  | 25093 | /A | 50  | 20 |           |
| 106 | EX3    | 24.07.2025 | 14:47 | 79 | 25,025 | 8  | 30,509 | 187  | 6  | 25094 | /A | 20  | 0  |           |
| 107 | NB3    | 25.07.2025 | 08:21 | 80 | 38,771 | 16 | 19,81  | 157  | 11 | 25095 | /A | 155 | 40 |           |
| 108 | NB3    | 25.07.2025 | 08:21 | 80 | 38,771 | 16 | 19,81  | 157  | 11 | 25096 | /A | 40  | 20 |           |
| 109 | NB3    | 25.07.2025 | 08:21 | 80 | 38,771 | 16 | 19,81  | 157  | 11 | 25097 | /A | 20  | 0  |           |
| 110 | NB6    | 25.07.2025 | 11:06 | 80 | 42,213 | 16 | 12,135 | 1552 | 11 | 25098 | /A | 200 | 40 |           |
| 111 | NB6    | 25.07.2025 | 11:06 | 80 | 42,213 | 16 | 12,135 | 1552 | 11 | 25099 | /A | 40  | 20 |           |
| 112 | NB6    | 25.07.2025 | 11:06 | 80 | 42,213 | 16 | 12,135 | 1552 | 11 | 25100 | /A | 20  | 0  |           |
| 113 | NB10   | 25.07.2025 | 17:11 | 80 | 46,457 | 16 | 3,928  | 1141 | 7  | 25101 | /A | 200 | 40 |           |
| 114 | NB10   | 25.07.2025 | 17:11 | 80 | 46,457 | 16 | 3,928  | 1141 | 7  | 25102 | /A | 40  | 20 |           |
| 115 | NB10   | 25.07.2025 | 17:11 | 80 | 46,457 | 16 | 3,928  | 1141 | 7  | 25103 | /A | 20  | 0  |           |
| 116 | NB11   | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 117 | NB13   | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 118 | WB12   | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 119 | WB9    | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 120 | WB6    | -          | -     | -  | -      | -  | -      | -    | -  | -     | -  | -   | -  | Abandoned |
| 121 | WB3    | 26.07.2025 | 02:04 | 80 | 13,249 | 12 | 29,046 | 198  | 6  | 25104 | /A | 195 | 45 |           |
| 122 | WB3    | 26.07.2025 | 02:04 | 80 | 13,249 | 12 | 29,046 | 198  | 6  | 25105 | /A | 45  | 25 |           |

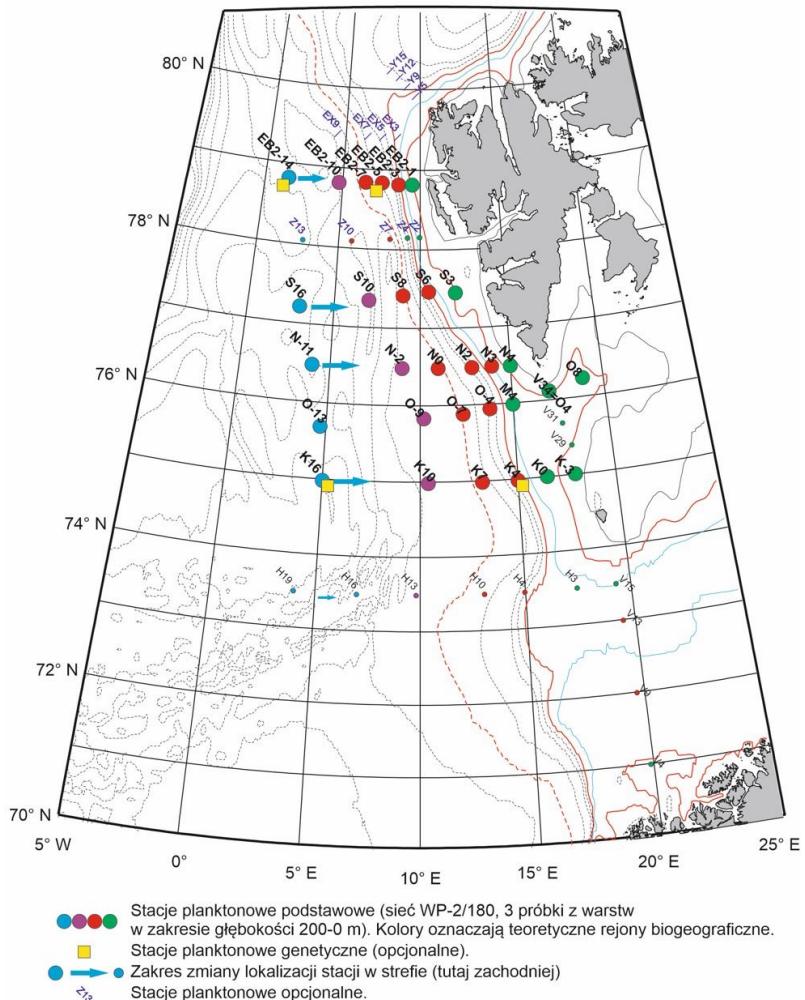



Fig. 5.5 Mapa stacji zbioru próbek zooplanktonu w czasie badań AREX 2025, część oceaniczna.

### *Further processing of data and collected samples*

No analytical or research work was carried out on the collected samples during the cruise. All analytical work, including the qualitative and quantitative analysis of zooplankton composition, is conducted after the cruise in the laboratory using stereoscopic and compound optical microscopes, following established and adapted procedures for laboratory analysis of zooplankton.

## 6 Measurements and sampling program during AREX 2025 Leg IIIa

### 6.1 General information about Leg IIIa

Leg IVa comprised research activities in the southern Svalbard region, including Hornsund fjord and shelf area in the forefield of Hornsund, the so-called *Alczykowisko* (little auk foraging area). The leg both started and ended in Longyearbyen, and was accompanied by a partial exchange of the scientific crew between Legs IIIa and IIIb. Embarkation of the scientific team for Leg IIIa took place in the afternoon of 30 July. Due to repairs of the starboard engine, departure from port was delayed by two days and was only possible on 1 August at 18:00 LT.

The research program began with a transverse hydrographic section and plankton station H1 at the entrance to the fjord. Subsequently, owing to unfavorable forecasts and a very short weather window, the vessel proceeded to the forefield of Hornsund and began implementation of the research program in the *Alczykowisko* (little auk foraging area). During the night of 3 August, a decision was made to terminate offshore operations and head deeper into Hornsund Fjord. Strong winds and high waves began to significantly affect logistics and station selection. On 4 and 5 August, plans were repeatedly modified in response to changing weather conditions, and work was mainly conducted in more sheltered bays, such as Samarinvågen and Brepollen. In the following days, a series of plankton, benthos, optical, and oceanographic measurements was continued, although their scope and sequence had to be adjusted. Weather conditions, with winds reaching 7–9B and considerable wave heights, frequently forced the cancellation of UVP measurements and, in some cases, other planned activities. The final days of the leg, 9–10 August, were also marked by strengthening winds, which limited operations in the central and outer parts of the fjord. Despite these difficulties, a large portion of the research program was successfully completed: numerous CTD profiles were carried out; benthic and zooplankton samples were collected at monitoring stations and along transverse sections; seabed imaging was performed; optical measurements were conducted; and measurements were carried out in several glacier-influenced bays (including Burgerbukta and Körberbukta). After completion of the scientific work, the ornithologists from the Polish Polar Station in Hornsund were taken on board, and on the morning of 11 August the vessel entered Longyearbyen, thereby concluding Leg IIIa.

In addition, hydrographic and optical measurements were conducted, and biological samples (from both the water column and bottom sediments) as well as sediment samples were collected at a station located close to the glacier front in Brepollen (station HBO), in order to complement the assessment of environmental conditions along the fjord axis and the influence of meltwater on ecosystem components (as a supplement to the monitoring station profile HB1–HB3).

A complete list of all research stations and the measurements performed is provided in Table 6.1.

From the very beginning of the leg, the measurement equipment of the Pelagic Biocenosis Functioning Laboratory, the so-called LOPC, was not operational. Despite multiple attempts, it could not be repaired.

Table 6.1 List of research stations of Leg IIIa with a detailed overview of the measurements.

| No | Station  | Depth (m) | Date     | Latitude (deg min N) | Longitude (deg min E) | Measurements and sampling                                                                                             |
|----|----------|-----------|----------|----------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1  | Rm1      | 65        | 02.08.25 | 76 59.689            | 15 14.348             | CTD SBE9/11+, UVP                                                                                                     |
| 2  | Rm2      | 121       | 02.08.25 | 76 58.602            | 15 16.372             | CTD SBE9/11+, UVP                                                                                                     |
| 3  | Rm3      | 133       | 02.08.25 | 76 57.778            | 15 18.379             | CTD SBE9/11+, UVP                                                                                                     |
| 4  | Rm4      | 166       | 02.08.25 | 76 56.999            | 15 20.194             | CTD SBE9/11+, UVP                                                                                                     |
| 5  | Rm5      | 145       | 02.08.25 | 76 55.175            | 15 23.749             | CTD SBE9/11+, UVP                                                                                                     |
| 6  | Rm6      | 81        | 02.08.25 | 76 54.631            | 15 25.313             | CTD SBE9/11+, UVP                                                                                                     |
| 7  | H1/R0    | 167       | 02.08.25 | 76 56.224            | 15 22.051             | CTD SBE9/11+, UVP, WP2/180, MPS/180, WP2/500, C-OPS, TRIOS, bbe Fluoroprobe, camera, bathometer                       |
| 8  | AUK13    | 40        | 02.08.25 | 76 35.556            | 15 46.896             | CTD SBE9/11+, WP2/180, WP2/500, UVP, C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                        |
| 9  | AUK13P   | 57        | 02.08.25 | 76 34.216            | 15 36.696             | CTD SBE9/11+, UVP                                                                                                     |
| 10 | AUK14    | 95        | 02.08.25 | 76 33.020            | 15 27.456             | CTD SBE9/11+, WP2/180, WP2/500, UVP                                                                                   |
| 11 | AUK14P   | 160       | 02.08.25 | 76 30.660            | 15 15.632             | CTD SBE9/11+, UVP                                                                                                     |
| 12 | AUK15    | 179       | 02.08.25 | 76 28.314            | 15 3.946              | CTD SBE9/11+, WP2/180, WP2/500, UVP                                                                                   |
| 13 | AUK15P   | 225       | 02.08.25 | 76 26.429            | 14 52.106             | CTD SBE9/11+, UVP                                                                                                     |
| 14 | AUK16    | 591       | 02.08.25 | 76 24.588            | 14 39.953             | CTD SBE9/11+, WP2/180, WP2/500, UVP                                                                                   |
| 15 | N4       | 147       | 03.08.25 | 76 29.894            | 15 1.877              | CTD SBE9/11+, WP2/180, C-OPS, TRIOS, bbe Fluoroprobe, bathometer, ekspozycja produkcji pierwotnej, bathometer, camera |
| 16 | N4_2     | 148       | 03.08.25 | 76 29.869            | 15 1.828              | CTD SBE9/11+                                                                                                          |
| 17 | N4_3     | 147       | 03.08.25 | 76 29.847            | 15 1.609              | CTD SBE9/11+                                                                                                          |
| 18 | AUK9     | 199       | 03.08.25 | 76 34.885            | 14 6.421              | CTD SBE9/11+, WP2/180, WP2/500, UVP                                                                                   |
| 19 | AUK9P    | 200       | 03.08.25 | 76 36.776            | 14 19.219             | CTD SBE9/11+, UVP                                                                                                     |
| 20 | AUK10    | 201       | 03.08.25 | 76 38.308            | 14 28.648             | CTD SBE9/11+, WP2/180, WP2/500, UVP, C-OPS, TRIOS, bathometer                                                         |
| 21 | AUK10P   | 214       | 03.08.25 | 76 39.715            | 14 38.355             | CTD SBE9/11+, UVP                                                                                                     |
| 22 | H6/AUK11 | 213       | 03.08.25 | 76 41.256            | 14 48.185             | CTD SBE9/11+, UVP, WP2/180, MPS/180, WP2/500, C-OPS, TRIOS, bbe Fluoroprobe, Van Veen, bathometer                     |
| 23 | AUK11P   | 202       | 03.08.25 | 76 43.126            | 15 3.081              | CTD SBE9/11+, UVP                                                                                                     |
| 24 | AUK12    | 55        | 03.08.25 | 76 45.075            | 15 18.293             | CTD SBE9/11+, WP2/500                                                                                                 |
| 25 | E6       | 110       | 04.08.25 | 76 55.976            | 16 16.267             | CTD SBE9/11+, Van Veen, box core, camera                                                                              |
| 26 | E5       | 111       | 04.08.25 | 76 56.887            | 16 14.873             | CTD SBE9/11+, Van Veen, box core, camera                                                                              |
| 27 | E4       | 110       | 04.08.25 | 76 58.043            | 16 13.099             | CTD SBE9/11+, Van Veen, box core, camera                                                                              |
| 28 | E1       | 89        | 04.08.25 | 77 0.877             | 16 7.615              | CTD SBE9/11+, Van Veen, box core, camera                                                                              |
| 29 | E2       | 52        | 04.08.25 | 76 59.998            | 16 9.490              | CTD SBE9/11+, Van Veen, box core, camera                                                                              |
| 30 | R13      | 70        | 05.08.25 | 77 2.026             | 16 33.115             | CTD SBE9/11+, UVP                                                                                                     |
| 31 | R12      | 119       | 05.08.25 | 77 0.491             | 16 30.029             | CTD SBE9/11+, UVP                                                                                                     |
| 32 | R11      | 125       | 05.08.25 | 76 59.870            | 16 25.376             | CTD SBE9/11+, UVP                                                                                                     |
| 33 | R10      | 118       | 05.08.25 | 76 59.338            | 16 20.888             | CTD SBE9/11+, UVP                                                                                                     |
| 34 | R9       | 105       | 05.08.25 | 76 58.795            | 16 13.945             | CTD SBE9/11+, UVP                                                                                                     |
| 35 | R8       | 46        | 05.08.25 | 76 59.238            | 16 8.118              | CTD SBE9/11+, UVP                                                                                                     |
| 36 | R7       | 78        | 05.08.25 | 76 59.605            | 16 4.325              | CTD SBE9/11+, UVP                                                                                                     |

|    |         |     |          |           |           |                                                                                                           |
|----|---------|-----|----------|-----------|-----------|-----------------------------------------------------------------------------------------------------------|
| 37 | R6      | 109 | 05.08.25 | 77 0.005  | 15 59.912 | CTD SBE9/11+, UVP                                                                                         |
| 38 | R5      | 174 | 05.08.25 | 76 59.538 | 15 53.156 | CTD SBE9/11+, UVP                                                                                         |
| 39 | R4/H2   | 228 | 05.08.25 | 76 58.921 | 15 45.659 | CTD SBE9/11+                                                                                              |
| 40 | HB1_opt | 63  | 05.08.25 | 77 3.161  | 16 33.964 | CTD SBE9/11+, UVP, WP2/180, Van Veen, Box Core, Nemisto, bathometer                                       |
| 41 | R13     | 75  | 05.08.25 | 77 1.976  | 16 32.787 | CTD SBE9/11+, C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                                   |
| 42 | H3/G3   | 134 | 05.08.25 | 77 0.511  | 16 29.678 | CTD SBE9/11+, UVP, WP2/180, MPS/180, C-OPS, TRIOS, bbe Fluoroprobe Van Veen, Box Core, camera, bathometer |
| 43 | HB1     | 125 | 05.08.25 | 77 0.145  | 16 27.788 | CTD SBE9/11+, Van Veen, Box Core, camera                                                                  |
| 44 | R9_opt  | 106 | 05.08.25 | 76 58.804 | 16 13.224 | CTD SBE9/11+, C-OPS, TRIOS, bathometer                                                                    |
| 45 | H4      | 106 | 05.08.25 | 77 0.600  | 16 0.625  | CTD SBE9/11+, MPS/180, C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                          |
| 46 | R3      | 106 | 06.08.25 | 76 58.313 | 15 39.347 | CTD SBE9/11+                                                                                              |
| 47 | R2      | 154 | 06.08.25 | 76 57.708 | 15 33.377 | CTD SBE9/11+                                                                                              |
| 48 | R1      | 130 | 06.08.25 | 76 56.987 | 15 26.547 | CTD SBE9/11+                                                                                              |
| 49 | R0      | 163 | 06.08.25 | 76 56.196 | 15 21.883 | CTD SBE9/11+                                                                                              |
| 50 | BR1     | 168 | 06.08.25 | 77 3.392  | 15 51.290 | CTD SBE9/11+, camera                                                                                      |
| 51 | BR0     | 126 | 06.08.25 | 77 4.643  | 15 49.584 | CTD SBE9/11+, camera                                                                                      |
| 52 | G5      | 62  | 06.08.25 | 76 58.939 | 16 31.954 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 53 | G4      | 74  | 06.08.25 | 76 59.765 | 16 31.007 | CTD SBE9/11+, UVP, Van Veen, Box Core                                                                     |
| 54 | G2      | 107 | 06.08.25 | 77 1.282  | 16 27.281 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 55 | G1      | 62  | 06.08.25 | 77 1.978  | 16 25.677 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 56 | F4      | 83  | 07.08.25 | 76 58.927 | 16 22.768 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 57 | F1      | 81  | 07.08.25 | 77 0.340  | 16 17.677 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 58 | F2      | 108 | 07.08.25 | 76 59.897 | 16 18.696 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 59 | F3      | 117 | 07.08.25 | 76 59.404 | 16 20.263 | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 60 | E3/R8   | 82  | 08.08.25 | 76 59.004 | 16 10.681 | CTD SBE9/11+, UVP, Van Veen, Box Core, C-OPS, TRIOS, bbe Fluoroprobe, bathometer                          |
| 61 | D3      | 108 | 08.08.25 | 76 59.971 | 16 0.055  | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 62 | HB2     | 79  | 08.08.25 | 77 0.073  | 16 5.359  | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 63 | HK1     | 51  | 08.08.25 | 76 58.606 | 16 0.878  | CTD SBE9/11+, UVP, Van Veen, camera, dredge, bathometer                                                   |
| 64 | HK2     | 13  | 08.08.25 | 76 58.594 | 16 2.387  | CTD SBE9/11+, UVP, Van Veen, camera, Nemisto, dredge, bathometer                                          |
| 65 | HK3     | 53  | 08.08.25 | 76 58.675 | 16 3.873  | CTD SBE9/11+, UVP, Van Veen, dredge, bathometer                                                           |
| 66 | H2      | 221 | 08.08.25 | 76 59.117 | 15 45.670 | CTD SBE9/11+, UVP, MPS/180, C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                     |
| 67 | HB3     | 225 | 08.08.25 | 76 58.067 | 15 45.077 | CTD SBE9/11+, Van Veen, Box Core                                                                          |
| 68 | C4      | 26  | 09.08.25 | 76 57.186 | 15 51.641 | CTD SBE9/11+                                                                                              |
| 69 | BR2     | 96  | 09.08.25 | 77 2.467  | 15 54.433 | CTD SBE9/11+, camera                                                                                      |
| 70 | BR3     | 82  | 09.08.25 | 77 1.550  | 15 58.099 | CTD SBE9/11+, camera                                                                                      |
| 71 | D1      | 111 | 09.08.25 | 77 1.585  | 16 0.662  | CTD SBE9/11+, UVP, Van Veen, Box Core, camera                                                             |
| 72 | BRE00   | 81  | 09.08.25 | 77 5.478  | 15 57.289 | CTD SBE9/11+, camera                                                                                      |
| 73 | BRE0    | 103 | 09.08.25 | 77 4.951  | 15 58.168 | CTD SBE9/11+, camera                                                                                      |
| 74 | BRE1    | 83  | 09.08.25 | 77 4.048  | 15 58.568 | CTD SBE9/11+, camera                                                                                      |
| 75 | BRE2    | 36  | 09.08.25 | 77 3.188  | 15 59.231 | CTD SBE9/11+, camera                                                                                      |
| 76 | BRE3    | 57  | 09.08.25 | 77 2.397  | 15 59.811 | CTD SBE9/11+, camera                                                                                      |
| 77 | D4      | 109 | 09.08.25 | 76 58.999 | 16 1.721  | CTD SBE9/11+, Van Veen, Box Core                                                                          |
| 78 | C3      | 209 | 10.08.25 | 76 57.953 | 15 51.710 | CTD SBE9/11+, Van Veen, Box Core                                                                          |
| 79 | C2/R5   | 181 | 10.08.25 | 76 59.621 | 15 51.760 | CTD SBE9/11+, Van Veen, Box Core, C-OPS, TRIOS, bbe Fluoroprobe, bathometer                               |

|    |       |     |          |           |           |                                                                             |
|----|-------|-----|----------|-----------|-----------|-----------------------------------------------------------------------------|
| 80 | C1    | 167 | 10.08.25 | 77 0.033  | 15 52.073 | CTD SBE9/11+, Van Veen, Box Core                                            |
| 81 | B3/R3 | 118 | 10.08.25 | 76 57.959 | 15 40.807 | CTD SBE9/11+, Van Veen, Box Core, C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| 82 | B1    | 49  | 10.08.25 | 76 59.534 | 15 39.631 | CTD SBE9/11+, Van Veen                                                      |
| 83 | B5    | 90  | 10.08.25 | 76 56.394 | 15 42.422 | CTD SBE9/11+, Van Veen, Box Core                                            |

## 6.2 Detailed description of biological measurements – plankton (PEP)

### *Description of methods and tools*

Studies on the qualitative and quantitative composition and spatial distribution of zooplankton in Hornsund Fjord and in the little auk foraging area in the forefield of Hornsund were conducted using standard ecological methods. Samples were collected at fixed monitoring stations using vertical hauls from the seabed to the surface, stratified according to the thermohaline structure of the water column.

The primary sampling tool was a MultiNet system equipped with 180 µm mesh nets, allowing precise sampling from selected depth layers through remote-controlled opening and closing. The vertical extent of individual layers was determined based on temperature and salinity profiles. Alternatively, at stations located within the little auk foraging area, a WP-2 net with a 500 µm mesh size was used. The aim of these investigations was to assess zooplankton abundance and its relationships with environmental conditions.

### *Description of measured parameters and collected samples*

Studies on the qualitative and quantitative composition and spatial distribution patterns of plankton communities in Hornsund Fjord and its forefield were conducted in order to understand their relationships with environmental conditions. Zooplankton samples were collected using a MultiNet (MPS) plankton net system in vertical hauls covering the entire water column at five long-term zooplankton monitoring stations (Table 6.2).

To assess zooplankton abundance in the little auk foraging area in the forefield of Hornsund Fjord, zooplankton samples were collected at eight research stations using a WP-2 net with a 500 µm mesh from the upper layer of the water column (0–50 m). In addition, the same sampling procedure was applied at station N4, which was selected for pilot studies in preparation for future monitoring campaigns within the ADBO framework (Fig. 6.1).

All samples were preserved immediately after collection with a 4% formaldehyde solution in seawater, buffered with borax, and were carefully labeled.

In addition, hydrographic measurements were carried out at all plankton stations using an SBE 911plus CTD system. At stations located in the forefield of Hornsund (the little auk foraging area), water transparency was also measured using a Secchi disk.

Table 6.2 List of plankton stations of the Plankton Ecology Laboratory (PEP) during Leg IIIa.

| Station              | Location      | Depth(m) | Latitude (deg min N) | Longitude (deg min E) | Sampling gear |
|----------------------|---------------|----------|----------------------|-----------------------|---------------|
| H1/R0- monitoring    | fjord mouth   | 167      | 76 56.224            | 15 22.051             | MPS           |
| AUK13                | Alczykowisko  | 40       | 76 35.556            | 15 46.896             | WP2/500       |
| AUK14                | Alczykowisko  | 95       | 76 33.020            | 15 27.456             | WP2/500       |
| AUK15                | Alczykowisko  | 179      | 76 28.314            | 15 3.946              | WP2/500       |
| AUK16                | Alczykowisko  | 591      | 76 24.588            | 14 39.953             | WP2/500       |
| N4                   | Alczykowisko  | 147      | 76 29.894            | 15 1.877              | WP2/500       |
| AUK9                 | Alczykowisko  | 199      | 76 34.885            | 14 6.421              | WP2/500       |
| AUK10                | Alczykowisko  | 201      | 76 38.308            | 14 28.648             | WP2/500       |
| H6/AUK11- monitoring | Alczykowisko  | 213      | 76 41.256            | 14 48.185             | MPS           |
| AUK12                | Alczykowisko  | 55       | 76 45.075            | 15 18.293             | WP2/500       |
| H3- monitoring       | Breepolen     | 134      | 77 0.511             | 16 29.678             | MPS           |
| H4- monitoring       | inner basin   | 106      | 77 0.600             | 16 0.625              | MPS           |
| H2- monitoring       | central basin | 221      | 76 59.117            | 15 45.670             | MPS           |

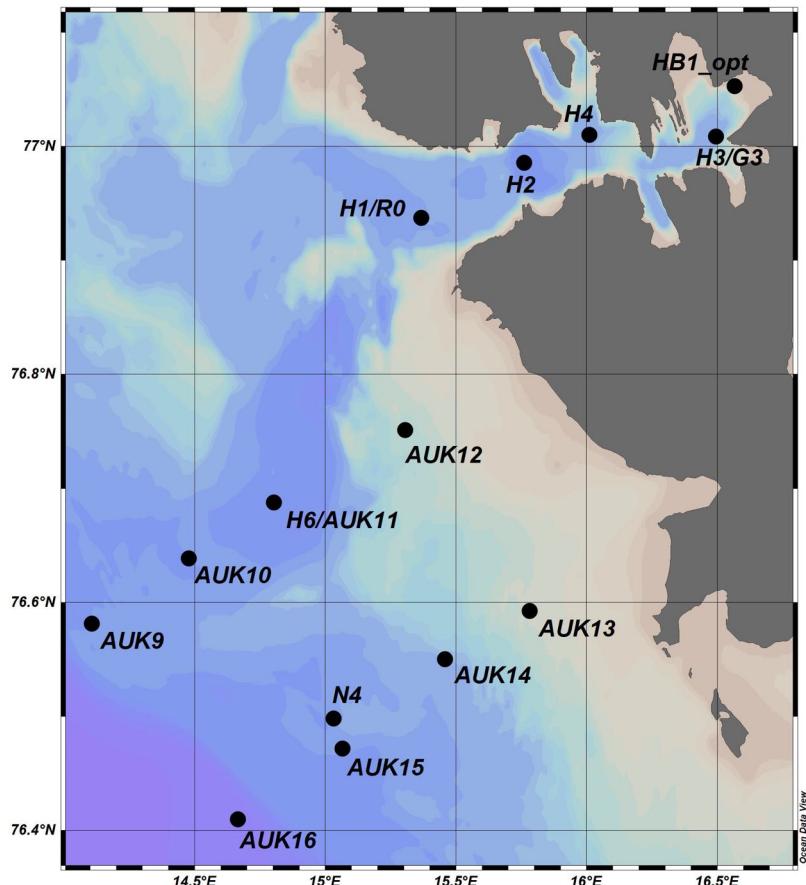



Fig. 6.1 Map of PEP plankton sampling stations in Hornsund during the AREX2025 Leg IIIa.

#### Further processing of data and collected samples

Analytical work on the zooplankton samples collected for faunistic studies, i.e., the qualitative and quantitative analysis of zooplankton composition, will be carried out after the cruise in the laboratory using optical microscopes and relevant scientific literature. The results of the

microscopic laboratory analyses, providing information on the taxonomic composition and abundance of zooplankton organisms in the samples, will form the basis for estimating the composition and abundance of zooplankton communities occurring in the Hornsund region.

The collected data will also be analyzed with respect to the influence of environmental conditions (e.g., temperature, salinity, and nutrient concentrations) on the structure of plankton communities.

### **6.3 Detailed description of biological measurements – plankton (PFBP)**

#### *Description of methods and tools*

Zooplankton composition and spatial distribution are analyzed using both traditional methods, such as plankton nets, and advanced optical techniques. The latter include a Laser Optical Plankton Counter (LOPC) and an Underwater Vision Profiler (UVP), which enable non-invasive measurements with high spatial resolution. During the studies conducted in the Hornsund region by the Pelagic Biocenosis Functioning Laboratory, only the UVP system was used due to a malfunction of the LOPC.

Consequently, measurements were limited to vertical profiles at selected stations, carried out in the upper layer of the water column (0–50 m). Whenever possible, three up-and-down profiles were performed; however, due to time constraints and weather conditions, this was not always feasible, and in such cases, measurements were restricted to a single profile.

In addition, the traditional method of zooplankton sampling using a WP-2 plankton net with a mesh size of 180 µm was employed.

#### *Description of measured parameters and collected samples*

Research conducted within the LAPSE/SEAPOP projects and as part of the long-term monitoring program in Hornsund Fjord and its forefield focused on assessing plankton abundance and its role in ecosystem functioning, in particular for little auks, which are key planktivorous seabirds breeding in the region (Figs. 6.2, 6.3). To this end, zooplankton samples were collected using a WP2/180 plankton net and by applying optical methods, namely the Underwater Vision Profiler (UVP). These investigations were carried out in the upper layer of the water column (0–50 m). After collection, zooplankton samples were frozen (one haul per station) and preserved in ethyl alcohol and formalin (the second haul divided into two subsamples).

To investigate the variability of carotenoids in key Arctic zooplankton species (*Calanus* copepods) and their influence on the diet quality and condition of planktivorous little auks, zooplankton samples for genetic and taxonomic analyses, as well as water samples for phytoplankton, carotenoid, and mercury analyses, were collected at selected stations in the forefield of Hornsund within the framework of the ORANGE project (stations H6 and N4; Table 6.3). At each station, two vertical hauls were performed with a WP2/180 plankton net from the surface layer of the water column (0–50 m). The collected material was frozen (one haul)

for genetic analyses of zooplankton and preserved in ethyl alcohol (the second haul) for taxonomic analyses. Water samples from depths of 5, 15, 25, 35, and 50 m intended for carotenoid and mercury analyses were filtered through Whatman GF/F filters (0.7 µm pore size) and frozen, whereas integrated water samples intended for phytoplankton analyses were preserved with Lugol's solution.

Vertical UVP profiles were also conducted at additional stations located in different parts of the fjord, in order to partly compensate for the inability to use the LOPC system. In addition, hydrographic measurements were carried out at all plankton stations using an SBE 911plus CTD system.

Table 6.3 List of plankton stations of the Pelagic Biocenosis Functioning Laboratory (PFBP).

| Station         | Location      | Depth(m) | Latitude<br>(deg min N) | Longitude<br>(deg min E) | Sampling gear            |
|-----------------|---------------|----------|-------------------------|--------------------------|--------------------------|
| H1/R0           | fjord mouth   | 167      | 76 56.224               | 15 22.051                | WP2/180, UVP             |
| AUK13           | Alczykowisko  | 40       | 76 35.556               | 15 46.896                | WP2/180, UVP             |
| AUK13P          | Alczykowisko  | 57       | 76 34.216               | 15 36.696                | UVP                      |
| AUK14           | Alczykowisko  | 95       | 76 33.020               | 15 27.456                | WP2/180, UVP             |
| AUK14P          | Alczykowisko  | 160      | 76 30.660               | 15 15.632                | UVP                      |
| AUK15           | Alczykowisko  | 179      | 76 28.314               | 15 3.946                 | WP2/180, UVP             |
| AUK15P          | Alczykowisko  | 225      | 76 26.429               | 14 52.106                | UVP                      |
| AUK16           | Alczykowisko  | 591      | 76 24.588               | 14 39.953                | WP2/180, UVP             |
| N4 - ORANGE     | Alczykowisko  | 147      | 76 29.894               | 15 1.877                 | WP2/180, UVP, bathometer |
| AUK9            | Alczykowisko  | 199      | 76 34.885               | 14 6.421                 | WP2/180, UVP             |
| AUK9P           | Alczykowisko  | 200      | 76 36.776               | 14 19.219                | UVP                      |
| AUK10           | Alczykowisko  | 201      | 76 38.308               | 14 28.648                | WP2/180, UVP             |
| AUK10P          | Alczykowisko  | 214      | 76 39.715               | 14 38.355                | UVP                      |
| H6/AUK11-ORANGE | Alczykowisko  | 213      | 76 41.256               | 14 48.185                | WP2/180, UVP, bathometer |
| AUK11P          | Alczykowisko  | 202      | 76 43.126               | 15 3.081                 | UVP                      |
| R13             | Breepolen     | 70       | 77 2.026                | 16 33.115                | UVP                      |
| R12             | Breepolen     | 119      | 77 0.491                | 16 30.029                | UVP                      |
| R11             | Breepolen     | 125      | 76 59.870               | 16 25.376                | UVP                      |
| R10             | Breepolen     | 118      | 76 59.338               | 16 20.888                | UVP                      |
| R9              | inner basin   | 105      | 76 58.795               | 16 13.945                | UVP                      |
| R8              | inner basin   | 46       | 76 59.238               | 16 8.118                 | UVP                      |
| R7              | inner basin   | 78       | 76 59.605               | 16 4.325                 | UVP                      |
| R6              | central basin | 109      | 77 0.005                | 15 59.912                | UVP                      |
| R5              | central basin | 174      | 76 59.538               | 15 53.156                | UVP                      |
| HB1_opt         | Breepolen     | 63       | 77 3.161                | 16 33.964                | WP2/180, UVP             |
| H3/G3           | Breepolen     | 134      | 77 0.511                | 16 29.678                | WP2/180, UVP             |
| G5              | Breepolen     | 62       | 76 58.939               | 16 31.954                | UVP                      |
| G4              | Breepolen     | 74       | 76 59.765               | 16 31.007                | UVP                      |
| G2              | Breepolen     | 107      | 77 1.282                | 16 27.281                | UVP                      |
| G1              | Breepolen     | 62       | 77 1.978                | 16 25.677                | UVP                      |
| F4              | Breepolen     | 83       | 76 58.927               | 16 22.768                | UVP                      |
| F1              | Breepolen     | 81       | 77 0.340                | 16 17.677                | UVP                      |
| F2              | Breepolen     | 108      | 76 59.897               | 16 18.696                | UVP                      |
| F3              | Breepolen     | 117      | 76 59.404               | 16 20.263                | UVP                      |
| E3/R8           | inner basin   | 82       | 76 59.004               | 16 10.681                | UVP                      |

|     |               |     |           |           |              |
|-----|---------------|-----|-----------|-----------|--------------|
| D3  | central basin | 108 | 76 59.971 | 16 0.055  | UVP          |
| HB2 | inner basin   | 79  | 77 0.073  | 16 5.359  | UVP          |
| HK1 | Körberbukta   | 51  | 76 58.606 | 16 0.878  | UVP          |
| HK2 | Körberbukta   | 13  | 76 58.594 | 16 2.387  | UVP          |
| H2  | central basin | 221 | 76 59.117 | 15 45.670 | WP2/180, UVP |
| D1  | Burgerbukta   | 111 | 77 1.585  | 16 0.662  | UVP          |

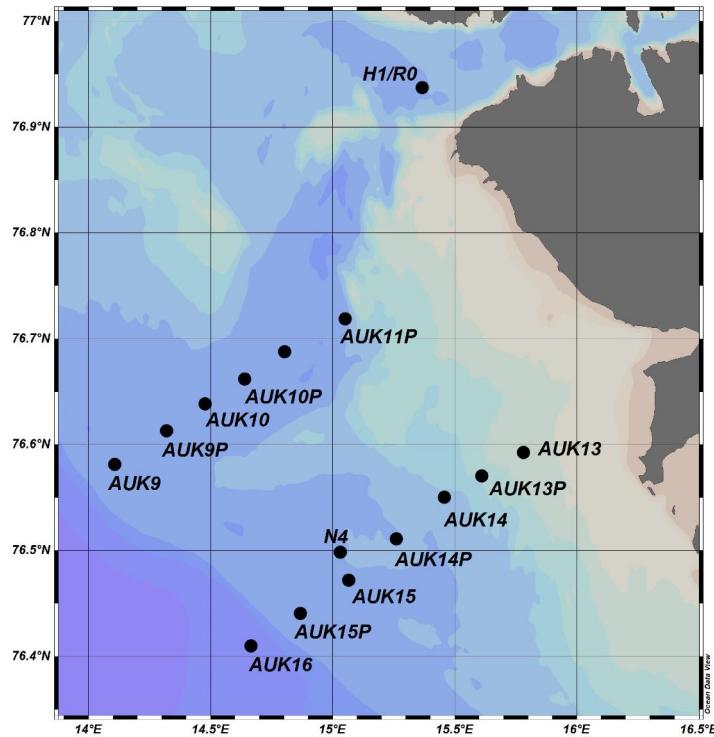



Fig. 6.2 Map of BFBP measurement stations in the forefield of Hornsund during the AREX2025 Leg IIIa.

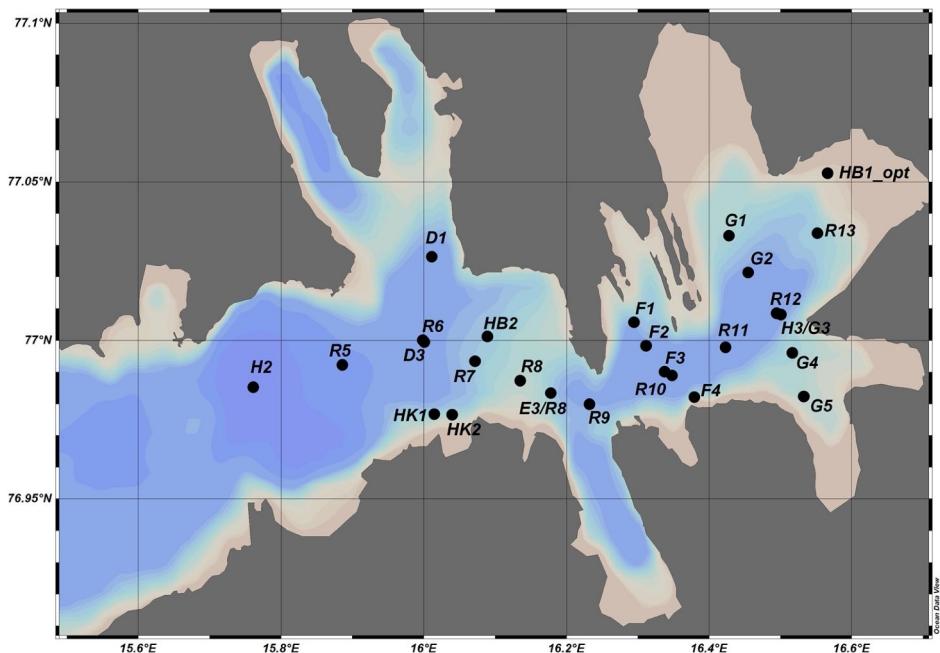



Fig. 6.3 Map of BFBP measurement stations in Hornsund during the AREX2025 Leg IIIa.

### *Further processing of data and collected samples*

The samples will be subjected to qualitative and quantitative analyses at the Institute of Oceanology, Polish Academy of Sciences (IOPAN). The UVP measurements were saved on an external hard drive. Further analysis of these data will be carried out at IOPAN.

## **6.4 Detailed description of biological measurements – benthos**

### *Description of methods and tools*

Studies on the qualitative and quantitative composition and spatial distribution of benthic organisms in Hornsund Fjord were conducted using standard ecological methods. Sediment samples were collected using a Van Veen grab and a box corer.

Samples intended for macrofauna analyses, collected with the Van Veen grab, were sieved onboard through a 500 µm mesh and subsequently preserved in formalin. Sediments for meiofauna analyses were collected using a box corer, from which cores 5 cm in length were taken using a Plexiglas tube with a diameter of 3.6 cm and preserved in formalin. In addition, sediment samples for the analysis of environmental parameters, including chlorophyll *a* content in sediments, carbon and nitrogen content, and granulometric composition, were collected using the same method and frozen at -80°C and -20°C, respectively.

Furthermore, benthic biodiversity will be analyzed using modern metagenomic methods, allowing for more precise species-level identification and the detection of taxa that are difficult to identify using traditional approaches. For this purpose, the surface sediment layer was collected from the box corer using a sterile spatula and frozen.

Sediments for the analysis of Kinorhyncha were collected using a Van Veen grab and were then subjected onboard to the “bubble and blot” method, which enables their extraction from the sediment. The extracted individuals were preserved in 99% ethyl alcohol and frozen. Additionally, the surface sediment layer from one Van Veen grab sample was collected, transferred to a sterile bag, and frozen.

The distribution of megafauna organisms was analyzed using an underwater camera deployed to the seafloor. The duration of a single video recording was approximately 20–30 minutes.

### *Description of measured parameters and collected samples*

The studies conducted in Hornsund Fjord aimed at a detailed analysis of benthic biodiversity and selected organism groups in the context of their spatial distribution and community structure. Samples were collected at long-term monitoring stations located in different parts of the fjord (Fig. 6.4), characterized by varying distances from the glacier front and, consequently, by contrasting environmental conditions. At each monitoring station (HB1, HB2, HB3), three Van Veen grab samples and three box corer samples were collected.

In addition, to determine the taxonomic composition, biomass, and abundance of macro- and meiobenthos, as well as their local-scale distribution patterns within Hornsund Fjord and to

compare the current community structure with data collected 20 years ago, one Van Veen grab sample (for macrofauna analyses) and three box corer samples (for meiofauna analyses) were collected at stations located along transects B–G (Fig. 6.4).

At selected stations (Fig. 6.5), seafloor video surveys were also conducted to assess the distribution and biodiversity of megafauna. In addition to the stations where macro- and meiofauna were sampled, video surveys were performed in both branches of Burgerbukta, in the glacier-proximal bay of Körberbukta, at station H1 at the entrance to the fjord, and at station N4 on the fjord forefield.

Studies of the diversity and spatial distribution of organisms from the phylum Kinorhyncha will include both morphological and molecular analyses, enabling detailed species identification as well as the assessment of their spatial patterns within the fjord environment. For this purpose, within the framework of the DRAGONnest project, three Van Veen grab samples were collected at the long-term benthic monitoring stations and at two additional stations (C2 and B3). From one of these samples, Kinorhyncha specimens were extracted using the “bubble and blot” method, while the remaining samples were frozen for subsequent metagenetic analyses.

At each station, a set of sediment samples was also collected for the analysis of physicochemical parameters (three replicates each) from the surface sediment layer: chlorophyll *a* from the 0–2 cm layer, grain-size distribution and carbon and nitrogen content from the 0–5 cm layer, as well as three replicate samples for metagenetic analyses.

Seafloor video surveys were carried out whenever time and logistical conditions allowed (weather and sea state), at a total of 30 research stations. For the first time, seafloor imagery was obtained for both parts of Burgerbukta.

In addition, hydrological measurements were conducted at all benthic stations using the SBE911plus CTD system.

Table 6.4 List of benthic stations of the Benthic Ecology Laboratory and the Meiofauna Laboratory.

| Station  | Location      | Depth(m) | Latitude (deg min N) | Longitude (deg min E) | Sampling gear              |
|----------|---------------|----------|----------------------|-----------------------|----------------------------|
| H6/AUK11 | forefield     | 213      | 76 41.256            | 14 48.185             | Van Veen, Box core         |
| N4       | forefield     | 147      | 76 29.894            | 15 1.877              | camera                     |
| H1/R0    | fjord mouth   | 167      | 76 56.224            | 15 22.051             | camera                     |
| E6       | central basin | 110      | 76 55.976            | 16 16.267             | Van Veen, Box core, camera |
| E5       | central basin | 111      | 76 56.887            | 16 14.873             | Van Veen, Box core, camera |
| E4       | central basin | 110      | 76 58.043            | 16 13.099             | Van Veen, Box core, camera |
| E1       | central basin | 89       | 77 0.877             | 16 7.615              | Van Veen, Box core, camera |
| E2       | central basin | 52       | 76 59.998            | 16 9.490              | Van Veen, Box core, camera |
| HB1_opt  | Breepolen     | 63       | 77 3.161             | 16 33.964             | Van Veen, Box core         |
| G3       | Breepolen     | 134      | 77 0.511             | 16 29.678             | Van Veen, Box core, camera |
| HB1      | inner basin   | 125      | 77 0.145             | 16 27.788             | Van Veen, Box core, camera |
| G5       | Breepolen     | 62       | 76 58.939            | 16 31.954             | Van Veen, Box core, camera |
| G4       | Breepolen     | 74       | 76 59.765            | 16 31.007             | Van Veen, Box core         |

|       |                     |     |           |           |                            |
|-------|---------------------|-----|-----------|-----------|----------------------------|
| G2    | Breepolen           | 107 | 77 1.282  | 16 27.281 | Van Veen, Box core, camera |
| G1    | Breepolen           | 62  | 77 1.978  | 16 25.677 | Van Veen, Box core, camera |
| F4    | inner basin         | 83  | 76 58.927 | 16 22.768 | Van Veen, Box core, camera |
| F1    | inner basin         | 81  | 77 0.340  | 16 17.677 | Van Veen, Box core, camera |
| F2    | inner basin         | 108 | 76 59.897 | 16 18.696 | Van Veen, Box core, camera |
| F3    | inner basin         | 117 | 76 59.404 | 16 20.263 | Van Veen, Box core, camera |
| E3    | central basin       | 82  | 76 59.004 | 16 10.681 | Van Veen, Box core         |
| D3    | central basin       | 108 | 76 59.971 | 16 0.055  | Van Veen, Box core, camera |
| HB2   | central basin       | 79  | 77 0.073  | 16 5.359  | Van Veen, Box core, camera |
| HB3   | inner basin         | 225 | 76 58.067 | 15 45.077 | Van Veen, Box core         |
| D1    | central basin       | 111 | 77 1.585  | 16 0.662  | Van Veen, Box core, camera |
| D4    | central basin       | 109 | 76 58.999 | 16 1.721  | Van Veen, Box core         |
| C3    | central basin       | 209 | 76 57.953 | 15 51.710 | Van Veen, Box core         |
| C2    | central basin       | 181 | 76 59.621 | 15 51.760 | Van Veen, Box core         |
| C1    | central basin       | 167 | 77 0.033  | 15 52.073 | Van Veen, Box core         |
| B3    | outer basin         | 118 | 76 57.959 | 15 40.807 | Van Veen, Box core         |
| B1    | outer basin         | 49  | 76 59.534 | 15 39.631 | Van Veen, Box core         |
| B5    | outer basin         | 90  | 76 56.394 | 15 42.422 | Van Veen, Box core         |
| BR1   | western Burgerbukta | 168 | 77 3.392  | 15 51.290 | camera                     |
| BR0   | western Burgerbukta | 126 | 77 4.643  | 15 49.584 | camera                     |
| HK1   | Körberbukta         | 51  | 76 58.606 | 16 0.878  | camera                     |
| HK2   | Körberbukta         | 13  | 76 58.594 | 16 2.387  | camera                     |
| BR2   | western Burgerbukta | 96  | 77 2.467  | 15 54.433 | camera                     |
| BR3   | western Burgerbukta | 82  | 77 1.550  | 15 58.099 | camera                     |
| BRE00 | eastern Burgerbukta | 81  | 77 5.478  | 15 57.289 | camera                     |
| BRE0  | eastern Burgerbukta | 103 | 77 4.951  | 15 58.168 | camera                     |
| BRE1  | eastern Burgerbukta | 83  | 77 4.048  | 15 58.568 | camera                     |
| BRE2  | eastern Burgerbukta | 36  | 77 3.188  | 15 59.231 | camera                     |
| BRE3  | eastern Burgerbukta | 57  | 77 2.397  | 15 59.811 | camera                     |

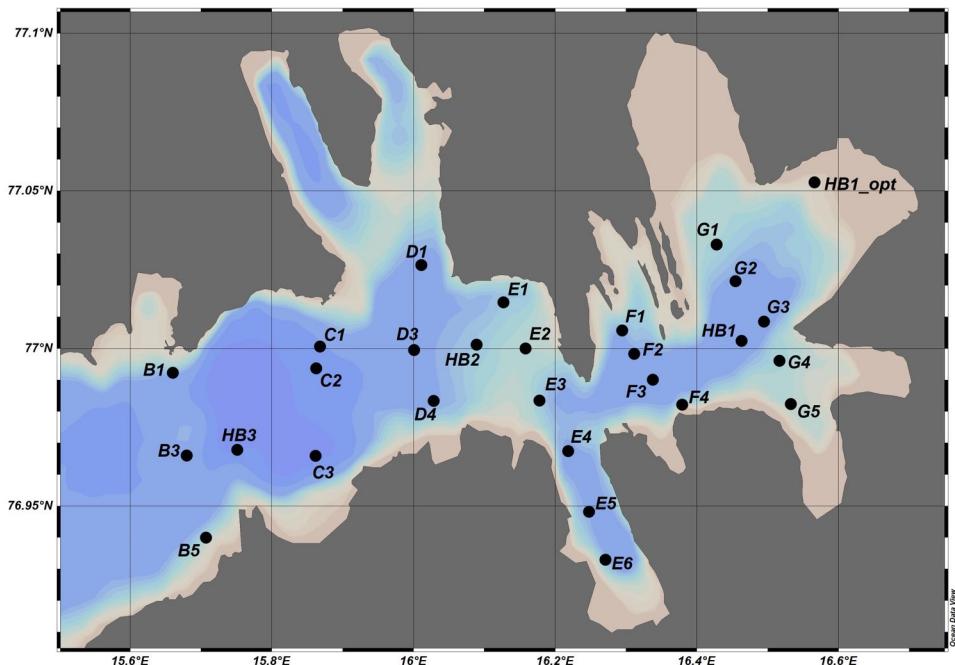
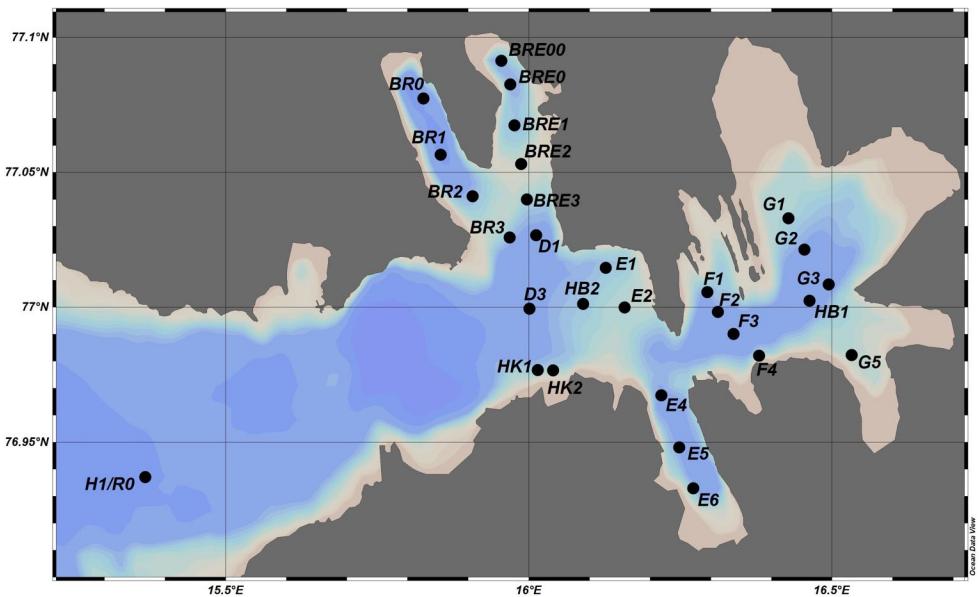




Fig. 6.4 Map of benthic stations in Hornsund (macrofauna and meiofauna) during the AREX2025 Leg IIIa.



*Figs. 6.5 Map of benthic stations (megafauna) in Hornsund Fjord and its forefield, where seabed video surveys were conducted during the AREX2025 leg IIIa.*

#### *Further processing of data and collected samples*

Preserved macrofauna and meiofauna samples will be subjected to qualitative and quantitative analyses in the laboratories of the Department of Ecology at IOPAN. Physicochemical analyses of sediments will be carried out partly at IOPAN and partly outsourced to external institutions. Samples intended for (meta)genetic analyses will be prepared in IOPAN laboratories and subsequently sent for sequencing to external service providers. Processing of images and video material obtained with the underwater camera will be conducted at the Department of Ecology, IOPAN. The analysis of the resulting data will provide valuable information on benthic biodiversity in Hornsund Fjord and will contribute to expanding knowledge on the ecology and evolution of poorly known organism groups, such as Kinorhyncha.

## **6.5 Detailed description of marine optical measurements**

#### *Description of methods and tools*

Studies conducted by the Marine Remote Sensing Laboratory and the Marine Biophysics Laboratory aimed to characterize the optical properties of fjord waters of Spitsbergen in order to develop local satellite algorithms for determining concentrations of seawater constituents in the North Atlantic.

Measurements of the spectral characteristics of vertical profiles of solar irradiance attenuation in the water column and of surface spectral reflectance distributions were carried out using a profiling radiometer C-PrOPS (COPs; Biospherical) and RAMSES radiometer systems (TRIOS). These measurements were used to assess light transmission efficiency in

different water layers, identify zones of varying biological productivity, and improve the interpretation of satellite data.

For this purpose, during the fjord leg of the cruise the following instrumentation and methods were used:

- a) Optical profiling system – COPs: The COPs (Compact Optical Profiling System, Biospherical Instruments Inc.) was operated in free-fall mode. The instrument was deployed from the ship's side in a way that minimized the influence of the ship's shadow. Measurements were carried out down to the lower boundary of the euphotic zone, to the seabed in shallower locations, or to shallower depths under adverse weather conditions.
- b) Deck-mounted pyranometers: These instruments measured the above-water downwelling irradiance  $E_s(\lambda)$ . The obtained data were used to calculate vertical PAR (Photosynthetically Active Radiation) profiles and to derive water color (ocean color) characteristics.
- c) RAMSES radiometer (TRIOS): The RAMSES radiometer system (TRIOS) was mounted on a specially designed frame that enabled measurements of upwelling radiance just below the water surface, independently of weather conditions. As with the COPs system, underwater measurements were complemented by simultaneous above-water irradiance measurements using a sensor mounted on the vessel.
- d) FluoroProbe fluorometer (bbe Moldaenke): This instrument measured the fluorescence of individual taxonomic groups throughout the entire water column, allowing for the determination of the vertical distribution of phytoplankton functional groups.

To characterize biogeochemical properties, discrete water samples were collected from the surface and from selected depths, identified based on the vertical distribution of fluorescence, temperature, and salinity. The samples were prepared for the determination of phytoplankton pigment concentrations, dissolved substances, total suspended matter (with separation into organic and inorganic fractions), and light absorption coefficients of particles and dissolved substances. Additional samples were used to assess DOM (dissolved organic matter) properties based on its absorption and fluorescence.

Primary production was quantified using the classical  $^{14}\text{C}$  radioisotope method. Water was collected from depths of 0, 1, 2, 3, 5, 7, 10, 15, 20, and 30 m and incubated for 4 hours under natural light conditions. After incubation, the samples were filtered to determine chlorophyll and carotenoid concentrations by HPLC, chlorophyll a, and absorption coefficients of suspended particles ( $a_p$ ), phytoplankton ( $a_{\text{ph}}$ ), and detritus ( $a_d$ ).

During each incubation experiment, temperature and salinity profiles were simultaneously recorded using the SBE911plus CTD system, and a series of optical measurements (C-PrOPS and RAMSES radiometers) was performed at the beginning, middle, and end of each incubation. This approach enabled a comprehensive assessment of changes in light conditions and environmental parameters during primary production measurements.

### *Description of measured parameters and collected samples*

In addition to the instruments listed above that were used for in situ measurements of the optical properties of seawater, discrete seawater samples were also collected using a bathometer from three layers: 0–5 m (surface waters), from the layer of maximum chlorophyll concentration determined on the basis of temperature, salinity, and chlorophyll a (Chl a) profiles acquired immediately prior to sampling, and from the underlying layer characterized by distinctly different salinity conditions.

The collected water was filtered through filters of different porosities in order to obtain the following parameters during subsequent laboratory analyses at the Institute:

- a) Chl a – chlorophyll a concentration determined spectrophotometrically,
- b) HPLC – concentrations of chlorophyll and accessory carotenoids determined by chromatographic methods,
- c) a<sub>pl</sub> – light absorption coefficients of suspended particles in water, phytoplankton, and detritus, determined using the Tassan–Ferrari method.

In addition, water samples were preserved in borosilicate glass bottles to determine FDOM (excitation–emission fluorescence matrices of dissolved organic matter DOM) and DOC (dissolved organic carbon concentration).

Samples intended for the analysis of particle size distribution in water using the conductometric method were preserved with Lugol's solution and stored in plastic bottles at a temperature of 8 °C.

Table 6.5 Map of optical measurement stations at the Horsund forefield and in Hornsund measured during the AREX2025 Leg IIIa.

| Station  | Location     | Depth(m) | Latitude (deg min N) | Longitude (deg min E) | Sampling gear                                                              |
|----------|--------------|----------|----------------------|-----------------------|----------------------------------------------------------------------------|
| H1/R0    | fjord mouth  | 167      | 76 56.224            | 15 22.051             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| AUK13    | Alczykowisko | 40       | 76 35.556            | 15 46.896             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| N4       | Alczykowisko | 147      | 76 29.894            | 15 1.877              | C-OPS, TRIOS, bbe Fluoroprobe, bathometer, ekspozycja produkcji pierwotnej |
| AUK10    | Alczykowisko | 201      | 76 38.308            | 14 28.648             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| H6/AUK11 | Alczykowisko | 213      | 76 41.256            | 14 48.185             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
|          |              |          |                      |                       | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| HB1_opt  | Breepolen    | 63       | 77 3.161             | 16 33.964             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| R13      | Breepolen    | 75       | 77 1.976             | 16 32.787             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| H3/G3    | Breepolen    | 134      | 77 0.511             | 16 29.678             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |
| R9_opt   | inner basin  | 106      | 76 58.804            | 16 13.224             | C-OPS, TRIOS, bbe Fluoroprobe, bathometer                                  |

|    |               |     |           |           |                                           |
|----|---------------|-----|-----------|-----------|-------------------------------------------|
| H4 | inner basin   | 106 | 77 0.600  | 16 0.625  | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| R8 | inner basin   | 82  | 76 59.004 | 16 10.681 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| H2 | central basin | 221 | 76 59.117 | 15 45.670 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| R5 | central basin | 181 | 76 59.621 | 15 51.760 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| R3 | central basin | 118 | 76 57.959 | 15 40.807 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |

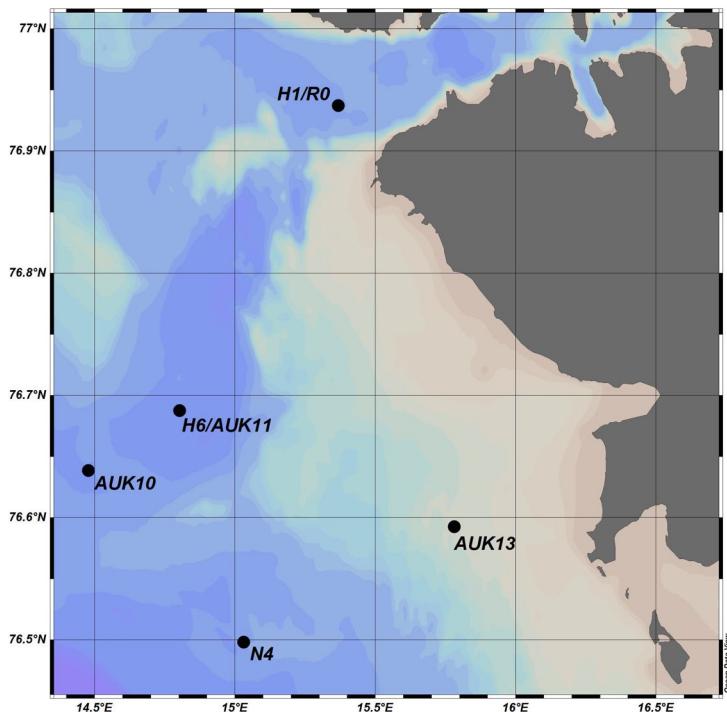
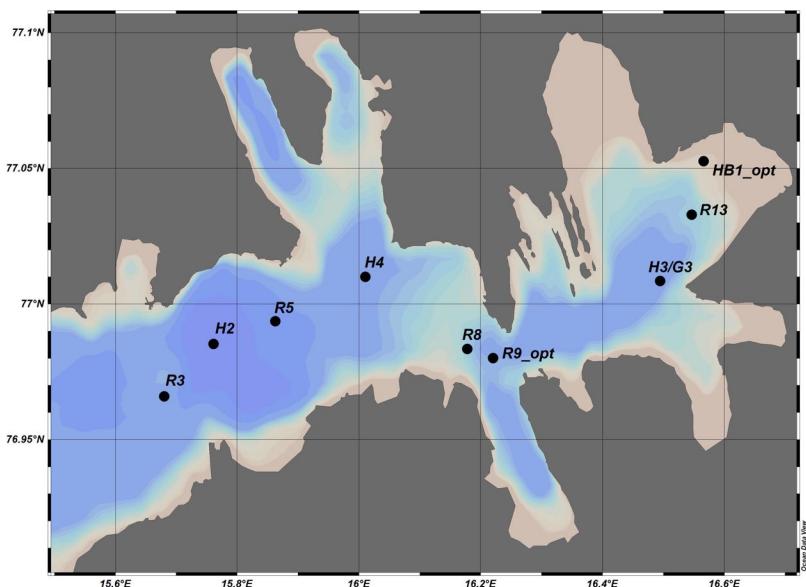




Fig. 6.6 Map of optical measurement stations at the Hornsund forefield during the AREX2025 Leg IIIa.



Rys. 6.7 Map of optical measurement stations in Hornsund during the AREX2025 Leg IIIa.

### *Further processing of data and collected samples*

The samples collected on filters and the water samples intended for FDOM and DOC analyses were properly preserved and stored under appropriate conditions until further laboratory analyses at IOPAN.

## **6.6 Detailed description of marine chemistry measurements**

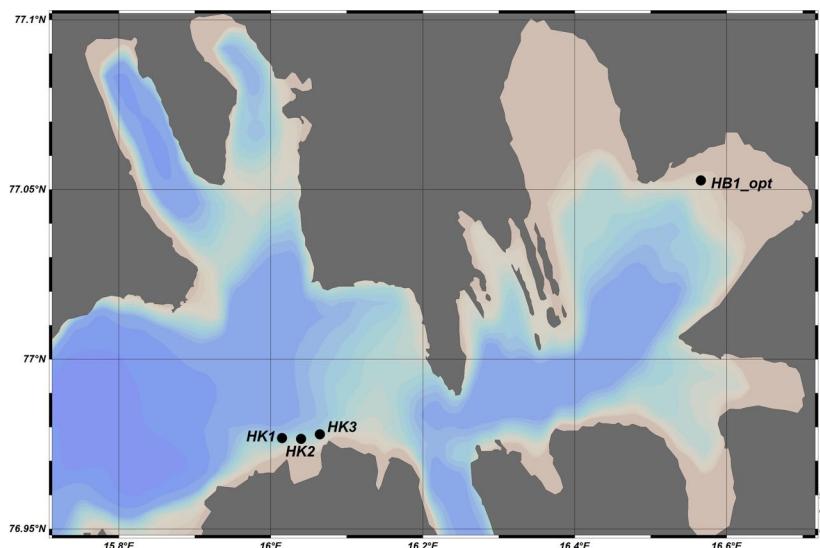
### *Description of methods and tools*

Studies aimed at determining the contamination of bottom sediments, waters, and suspended matter by heavy metals, organic pollutants, and radioactive isotopes, as well as the degree of contamination of benthic organisms by these compounds in glacier-influenced bays, were conducted using comprehensive ecological methods. Basic physical parameters of the water column were measured with a CTD probe. Water samples were collected from three depths: the surface (0 m), an intermediate layer (20 m), and the near-bottom zone. The samples were filtered, and both filters and water samples were preserved by freezing or by adding appropriate reagents, thereby preparing the material for analyses of heavy metals, organic pollutants, and radioactive isotopes in onshore laboratories.

Bottom sediments were collected using a Nemisto-type corer, which allows for the retrieval of undisturbed sediment cores. Each core was sectioned into 1-cm layers, enabling a detailed reconstruction of the vertical distribution of contaminant concentrations. Sediment samples intended for chemical analyses were immediately frozen to preserve their structure and chemical composition. Samples for microbiological analyses were taken from the surface layer of the Van Veen grab using a sterile spatula and then frozen.

Benthic organisms were collected using a bottom dredge, which allowed sampling from the sediment surface in the glacier-influenced bay area. The collected material was initially sorted and subjected to preliminary taxonomic identification. The organisms were then preserved by freezing, allowing their subsequent use in chemical analyses to determine concentrations of heavy metals, persistent organic pollutants, and radioactive isotopes.

### *Description of measured parameters and collected samples*


Studies conducted in Hornsund Fjord aimed to provide a detailed analysis of contamination levels in individual environmental components, i.e., the water column, sediments, and benthic organisms. Samples were collected in the glacier-influenced bay Körberbukta (Table 6.6; Fig. 6.8). At each station, bottom dredging was performed to obtain a quantitatively sufficient and taxonomically diverse sample of benthic organisms. Sediment samples for microbiological analyses were also collected using a Van Veen grab. At station HK2, a 30 cm-long sediment core was retrieved.

In addition, at station HB1\_opt, located in the inner part of Breepolen, a 42 cm-long sediment core was collected. Investigations at this station will serve as an environmental background

for monitoring the glacier-influenced bay area that has been exposed by the retreating glacier.

Table 6.6 List of sampling stations of the Polar Regions Contamination Laboratory.

| Station | Location    | Depth(m) | Latitude (deg min N) | Longitude (deg min E) | Sampling gear                         |
|---------|-------------|----------|----------------------|-----------------------|---------------------------------------|
| HB1_opt | Breepolen   | 63       | 77 03.161            | 16 33.964             | Nemisto                               |
| HK1     | Körberbukta | 51       | 76 58.606            | 16 00.878             | Dredge, Van Veen, bathometer          |
| HK2     | Körberbukta | 43       | 76 58.594            | 16 02.387             | Nemisto, dredge, Van Veen, bathometer |
| HK3     | Körberbukta | 53       | 76 58.675            | 16 30.873             | Dredge, Van Veen, bathometer          |



Rys. 6.8 Map of marine chemistry stations during the AREX2025 Leg IIIa.

#### *Further processing of data and collected samples*

Laboratory analyses of the collected samples of suspended matter, bottom sediments, and benthic organisms will include the determination of concentrations of selected contaminants: heavy metals (using AAS and ICP-MS) and  $^{137}\text{Cs}$  (using a gamma analyzer). In addition, sediment accumulation rates (using the  $^{210}\text{Pb}$  method) and organic carbon content (CHN analysis) will be determined. These analyses will be carried out at the Polar Regions Contamination Laboratory. Analyses of organic pollutant concentrations will be performed subsequently at the Geotoxicology Laboratory. Depending on available funding, microbiological analyses will then be conducted in cooperation with the Marine Genetics Laboratory.

## **6.7 Detailed description of oceanographic measurements**

#### *Description of methods and tools*

To investigate the thermohaline and oxygen properties as well as the distribution of water masses in Hornsund Fjord and its forefield, hydrographic measurements were carried out

using the SBE 9/11+ CTD system. A detailed description of the SBE 9/11+ measurement system is provided in Chapter 5.

#### *Description of measured parameters and collected samples*

In the forefield of Hornsund, CTD measurements were performed only down to ~200 m in order to save time and because the focus was on processes occurring in the surface layer. In the fjord, full-depth profiles were carried out down to the bottom. Within the fjord, transects (spatially dense vertical profiles) were conducted both along and across the main axis of the fjord (at the fjord mouth) (Fig. 6.9) in order to investigate water dynamics, exchange with the shelf, and interannual variability relative to previous years. In total, 29 vertical CTD casts were performed. Additional vertical CTD profiles were also collected in Burgerbukta, in both its western and eastern branches (Fig. 6.9).

Furthermore, CTD measurements were conducted at every station where optical measurements were performed or where zooplankton or benthic samples were collected. Altogether (including the Rm and R transects), 83 vertical CTD casts were completed using the SBE 911plus system. Water samples for plankton, benthos, and optical studies were collected using a bathometer available on board the vessel. Throughout the entire leg, current measurements were also collected using VM-ADCP.

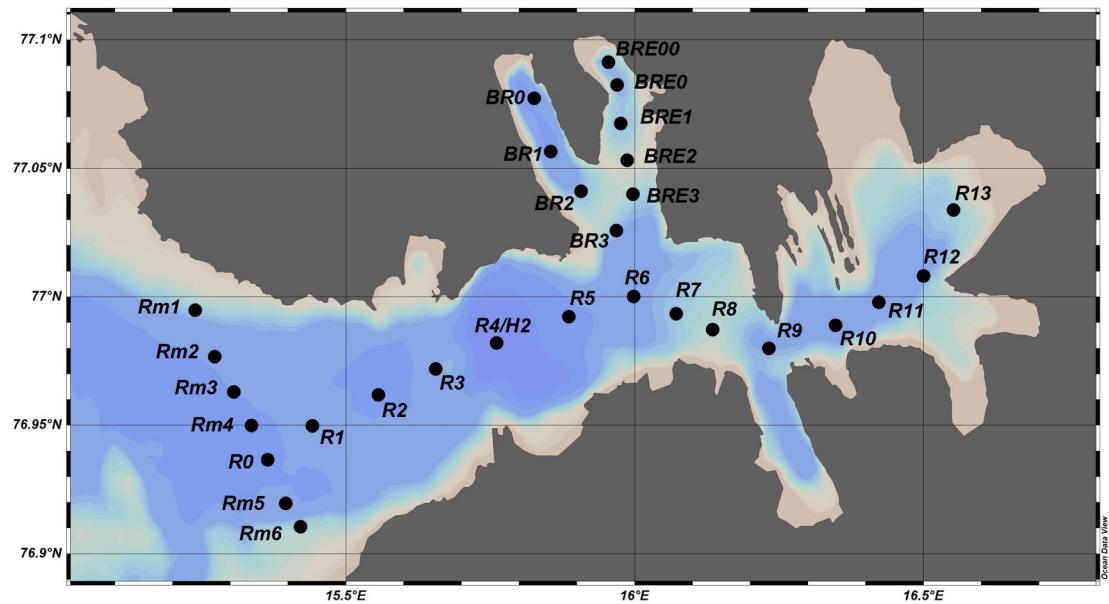



Fig. 6.9 Map of CTD stations measured in Hornsund during the AREX2025 leg IIIa.

#### *Further processing of data and collected samples*

The collected data were recorded and will be further processed and analyzed at IOPAN.

## 7 Measurements and sampling program during AREX 2025 Leg IIIb

### 7.1 General information about Leg IVb

Leg IIIb began on 12 August with a berth stay in Longyearbyen, during which part of the crew was exchanged, freshwater was bunkered, and the previous leg of the cruise was formally closed. The planned departure was delayed due to the emergency disembarking of the crew member (cook) who was transported ashore. After weighing anchor, a decision was made to remain in Isfjorden while awaiting information on the arrival of a cook replacement.

Research activities commenced in the glacial bay Borebukta, where, at three stations, seabed video surveys were conducted, macrofauna samples were collected, sediments for biogeochemical analyses were taken, Nemisto cores were retrieved, and dredging was carried out. On the following day, work began on the profile comprising stations ISA, ISF3, and BAB. Due to the failure of the LOPC instrument since the beginning of Leg IIIa, replacement measurements using the UVP system were also carried out during Leg IIIb, both at the main stations and at intermediate points. Plankton samples and water for phytoplankton analyses were collected, optical measurements were performed, and in the BAB area additional seabed video surveys and sampling were conducted as part of the pilot studies for the TWINS BIS project. The night was spent at anchor in Adolfbukta.

Subsequently, a series of benthic surveys was conducted at stations in the central part of the fjord. After completing the scientific work, the vessel set course for Longyearbyen, where a new cook was embarked. However, at that time a failure of the ship's generator temperature sensor occurred, making further navigation outside Isfjorden impossible. As immediate repair was not feasible, the vessel remained in the Longyearbyen area. Attempts to obtain spare parts locally were unsuccessful, and their delivery from Poland required several days, which prevented the implementation of the main plan for Leg IIIb. As a result, the original objectives of Leg IIIb could not be achieved, and the planned research in Kongsfjorden and Magdalenefjorden could not be carried out.

The vessel remained in Isfjorden, where, in accordance with existing permits and within the available logistical constraints, an alternative research programme was organized. Benthic, optical, and plankton studies were conducted, among others, in Dicksonfjorden, Ekmanfjorden, and at station BAB. The research teams also developed an alternative plan involving an intensive 24-hour monitoring of the water column at station BABA (located close to station BAB). Within this programme, CTD and UVP measurements were performed hourly, while optical measurements and zooplankton sampling were carried out every four hours. In parallel, the benthic and marine chemistry team conducted work related to a planned project on the role of jellyfish in carbon transfer to bottom sediments. Additional activities included seabed video surveys, sediment coring, dredging, and sampling within the TWINS BIS and DRAGONnest projects.

Despite the inability to leave Isfjorden, Leg IIIb was used to the fullest extent possible under the prevailing conditions, and the scientific team carried out a range of valuable substitute studies. The leg concluded with the return to Longyearbyen and the disembarkation of the research team on 22 August.

Table 7.1. List of research stations of Leg IIIb with a detailed overview of the measurements.

| No | Station | Depth (m) | Date     | Latitude (deg min N) | Longitude (deg min E) | Measurements and sampling                                                               |
|----|---------|-----------|----------|----------------------|-----------------------|-----------------------------------------------------------------------------------------|
| 1  | IB1     | 37        | 13.08.25 | 78 20.965            | 14 27.235             | CTD SBE9/11+, UVP, Van Veen, camera, Nemisto, dredge, bathometer                        |
| 2  | IB2     | 39        | 13.08.25 | 78 20.621            | 14 25.512             | CTD SBE9/11+, UVP, Van Veen, camera, Nemisto, dredge, bathometer                        |
| 3  | IB3     | 57        | 13.08.25 | 78 20.239            | 14 23.699             | CTD SBE9/11+, UVP, Van Veen, camera, Nemisto, dredge, bathometer                        |
| 4  | ISA     | 165       | 14.08.25 | 78 14.578            | 15 16.392             | CTD SBE9/11+, UVP, WP2/100, bathometer                                                  |
| 5  | ISA_P   | 152       | 14.08.25 | 78 20.644            | 15 40.201             | CTD SBE9/11+, UVP                                                                       |
| 6  | ISF3    | 90        | 14.08.25 | 78 26.807            | 16 04.699             | CTD SBE9/11+, UVP, WP2/100, camera, C-OPS, TRIOS, bbe Fluoroprobe, bathometer           |
| 7  | ISF3_P  | 114       | 14.08.25 | 78 33.354            | 16 24.744             | CTD SBE9/11+, UVP, camera                                                               |
| 8  | BAB     | 183       | 14.08.25 | 78 39.684            | 16 44.316             | CTD SBE9/11+, UVP, WP2/60, WP2/100, WP2/180, WP3/1000, camera, bathometer               |
| 9  | IA1     | 87        | 15.08.25 | 78 39.221            | 16 49.628             | CTD SBE9/11+, Van Veen, Box Core                                                        |
| 10 | IA2     | 173       | 15.08.25 | 78 39.869            | 16 47.105             | CTD SBE9/11+, Van Veen, Box Core, camera                                                |
| 11 | IP1     | 31        | 15.08.25 | 78 40.422            | 16 31.121             | CTD SBE9/11+, Van Veen, Box Core, camera                                                |
| 12 | IB1_S   | 66        | 15.08.25 | 78 38.052            | 16 27.124             | CTD SBE9/11+, Van Veen, Box Core, camera, Nemisto                                       |
| 13 | IY1     | 47        | 16.08.25 | 78 16.120            | 13 58.021             | CTD SBE9/11+, Van Veen, camera, Nemisto, dredge, bathometer                             |
| 14 | IY2     | 46        | 16.08.25 | 78 16.116            | 13 59.273             | CTD SBE9/11+, Van Veen, Nemisto, dredge, bathometer                                     |
| 15 | IY3     | 37        | 16.08.25 | 78 16.132            | 14 00.764             | CTD SBE9/11+, Van Veen, camera, dredge, bathometer                                      |
| 16 | ISK     | 269       | 16.08.25 | 78 19.460            | 15 19.460             | CTD SBE9/11+, UVP, WP2/60, WP2/180, WP3/1000, C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| 17 | T4F     | 228       | 16.08.25 | 78 17.346            | 14 57.857             | CTD SBE9/11+, Van Veen                                                                  |
| 18 | ID1     | 41        | 17.08.25 | 78 47.653            | 15 17.480             | CTD SBE9/11+, Van Veen, Box Core, camera                                                |
| 19 | IDS     | 69        | 17.08.25 | 78 42.064            | 15 19.654             | CTD SBE9/11+, Van Veen, Box Core, camera                                                |
| 20 | ID6     | 35        | 17.08.25 | 78 36.571            | 15 08.666             | CTD SBE9/11+, Van Veen                                                                  |
| 21 | IE3     | 92        | 17.08.25 | 78 34.285            | 14 44.183             | CTD SBE9/11+, Van Veen, Box Core, camera                                                |
| 22 | IE2     | 42        | 17.08.25 | 78 37.554            | 14 42.352             | CTD SBE9/11+, Van Veen, Box Core, camera                                                |
| 23 | MONI6   | 143       | 17.08.25 | 78 31.110            | 14 56.502             | CTD SBE9/11+, C-OPS, TRIOS, bathometer                                                  |
| 24 | MONI5   | 227       | 17.08.25 | 78 23.192            | 15 11.674             | CTD SBE9/11+, C-OPS, TRIOS, bathometer                                                  |

|    |        |     |          |           |           |                                                                               |
|----|--------|-----|----------|-----------|-----------|-------------------------------------------------------------------------------|
| 25 | MONI3  | 284 | 18.08.25 | 78 09.266 | 14 00.691 | CTD SBE9/11+, C-OPS, TRIOS, bathometer                                        |
| 26 | BABA   | 127 | 18.08.25 | 78 39.383 | 16 45.815 | CTD SBE9/11+, UVP, C-OPS, TRIOS, bbe Fluoroprobe, WP2/180, bathometer, camera |
| 27 | BABA1  | 127 | 18.08.25 | 78 39.359 | 16 45.655 | CTD SBE9/11+, UVP                                                             |
| 28 | BABA2  | 127 | 19.08.25 | 78 39.335 | 16 45.865 | CTD SBE9/11+, UVP                                                             |
| 29 | BABA3  | 123 | 19.08.25 | 78 39.336 | 16 45.976 | CTD SBE9/11+, UVP                                                             |
| 30 | BABA4  | 126 | 19.08.25 | 78 39.364 | 16 45.881 | CTD SBE9/11+, UVP, C-OPS, TRIOS, bbe Fluoroprobe WP2/60, bathometer           |
| 31 | BABA5  | 124 | 19.08.25 | 78 39.346 | 16 45.890 | CTD SBE9/11+, UVP                                                             |
| 32 | BABA6  | 131 | 19.08.25 | 78 39.365 | 16 45.773 | CTD SBE9/11+, UVP                                                             |
| 33 | BABA7  | 131 | 19.08.25 | 78 39.403 | 16 45.798 | CTD SBE9/11+, UVP                                                             |
| 34 | BABA8  | 127 | 19.08.25 | 78 39.362 | 16 45.850 | CTD SBE9/11+, UVP, C-OPS, TRIOS, bbe Fluoroprobe, WP2/60, bathometer          |
| 35 | BABA9  | 139 | 19.08.25 | 78 39.442 | 16 45.823 | CTD SBE9/11+, UVP                                                             |
| 36 | BABA10 | 124 | 19.08.25 | 78 39.337 | 16 45.955 | CTD SBE9/11+, UVP                                                             |
| 37 | BABA11 | 123 | 19.08.25 | 78 39.356 | 16 45.785 | CTD SBE9/11+, UVP                                                             |
| 38 | BABA12 | 124 | 19.08.25 | 78 39.336 | 16 45.818 | CTD SBE9/11+, UVP, C-OPS, TRIOS, WP2/60, bathometer                           |
| 39 | BABA13 | 130 | 19.08.25 | 78 39.399 | 16 45.811 | CTD SBE9/11+, UVP                                                             |
| 40 | BABA14 | 125 | 19.08.25 | 78 39.320 | 16 46.006 | CTD SBE9/11+, UVP                                                             |
| 41 | BABA15 | 140 | 19.08.25 | 78 39.412 | 16 45.647 | CTD SBE9/11+, UVP                                                             |
| 42 | BABA16 | 142 | 19.08.25 | 78 39.430 | 16 45.766 | CTD SBE9/11+, UVP, C-OPS, TRIOS, bbe Fluoroprobe, WP2/60, bathometer          |
| 43 | BABA17 | 126 | 19.08.25 | 78 39.367 | 16 45.996 | CTD SBE9/11+, UVP                                                             |
| 44 | BABA18 | 122 | 19.08.25 | 78 39.329 | 16 46.244 | CTD SBE9/11+, UVP                                                             |
| 45 | BABA19 | 107 | 19.08.25 | 78 39.222 | 16 46.295 | CTD SBE9/11+, UVP                                                             |
| 46 | BABA20 | 115 | 19.08.25 | 78 39.250 | 16 46.254 | CTD SBE9/11+, UVP, C-OPS, TRIOS, WP2/60, bathometer                           |
| 47 | BABA21 | 111 | 19.08.25 | 78 39.250 | 16 46.154 | CTD SBE9/11+, UVP                                                             |
| 48 | BABA22 | 115 | 19.08.25 | 78 39.264 | 16 45.995 | CTD SBE9/11+, UVP                                                             |
| 49 | BABA23 | 121 | 19.08.25 | 78 39.284 | 16 46.051 | CTD SBE9/11+, UVP                                                             |
| 50 | BABA24 | 123 | 19.08.25 | 78 39.293 | 16 46.219 | CTD SBE9/11+, UVP                                                             |
| 51 | SBI1   | 138 | 20.08.25 | 78 38.447 | 16 34.368 | CTD SBE9/11+, Van Veen, Box Core, camera                                      |
| 52 | SBI2   | 136 | 20.08.25 | 78 35.388 | 16 27.503 | CTD SBE9/11+, Van Veen, Box Core, camera                                      |
| 53 | SBI3   | 53  | 20.08.25 | 78 30.679 | 16 16.387 | CTD SBE9/11+, Van Veen, Box Core, camera                                      |
| 54 | SBI4   | 72  | 21.08.25 | 78 28.206 | 16 04.330 | CTD SBE9/11+, Van Veen, Box Core, camera                                      |

## 7.2 Detailed description of biological measurements – plankton (PEP)

### *Description of methods and tools*

Studies on habitat and feeding preferences of sibling zooplankton species, characterized by different centers of distribution, were conducted using vertically stratified net tows from the bottom to the surface. Sampling was performed with WP-2 nets with a mesh size of 60 µm and WP-3 nets with a mesh size of 1000 µm. The WP-2 (60 µm) net was also used to collect material at the 24-hour water-column monitoring station.

### *Description of measured parameters and collected samples*

For the purposes of the TWINS BIS project, which investigates habitat and feeding preferences of sibling zooplankton species, the sampling set included zooplankton samples intended for genetic analyses and stable isotope analyses in planktonic organisms, as well as seawater samples for the determination of chlorophyll concentration, stable carbon and nitrogen isotopes, and the qualitative and quantitative composition of planktonic protozoans. The study was conducted at two stations located in Isfjorden: ISK and BAB (Table 7.2, Fig. 7.1).

Samples were collected using a WP2 net with a mesh size of 1000 µm from the 0–100 m layer. After collection, zooplankton samples were divided into two parts using a splitter and preserved accordingly. One half, intended for taxonomic analyses, was preserved in 4% formalin, while the other half was split again and frozen. These frozen subsamples were designated for stable isotope analyses in planktonic organisms and for genetic analyses (metabarcoding).

Additional samples were collected using a WP2-60 net from three depth layers: 0–25 m, 25–50 m, and 50–100 m. These samples were preserved in the same way as those from the previous WP net, i.e., in formalin for taxonomic analyses or frozen for subsequent genetic or isotopic analyses.

At each station, in addition to zooplankton samples, seawater samples were collected from four depths for the analysis of chlorophyll concentration, stable carbon and nitrogen isotopes, and the qualitative and quantitative composition of planktonic protozoans. Water samples for chemical analyses were filtered onto Whatman GF/F filters (25 mm and 50 mm), which were subsequently frozen, while samples intended for protozoan analyses were preserved with Lugol's solution.

For the purposes of the studies conducted at station BABA, i.e., the 24-hour water column monitoring, three net tows were performed from the following depth layers: 125–50 m, 50–25 m, and 25–0 m using a WP2-60 µm zooplankton net. Samples were collected every 4 hours.

Table 7.2 List of plankton stations of the Plankton Ecology Laboratory (PEP) during Leg IIIb.

| Station | Location                               | Depth(m) | Latitude<br>(deg min N) | Longitude<br>(deg min E) | Sampling gear                   |
|---------|----------------------------------------|----------|-------------------------|--------------------------|---------------------------------|
| ISK     | Isfjorden<br>central basin             | 269      | 78 19.460               | 15 19.460                | WP3-1000, WP2-60,<br>bathometer |
| BAB     | Isfjorden/Billefjorden-<br>inner basin | 183      | 78 39.684               | 16 44.316                | WP3-1000, WP2-60,<br>bathometer |
| BABA    | Isfjorden/Billefjorden-<br>inner basin | 127      | 78 39.383               | 16 45.815                | WP2-60                          |

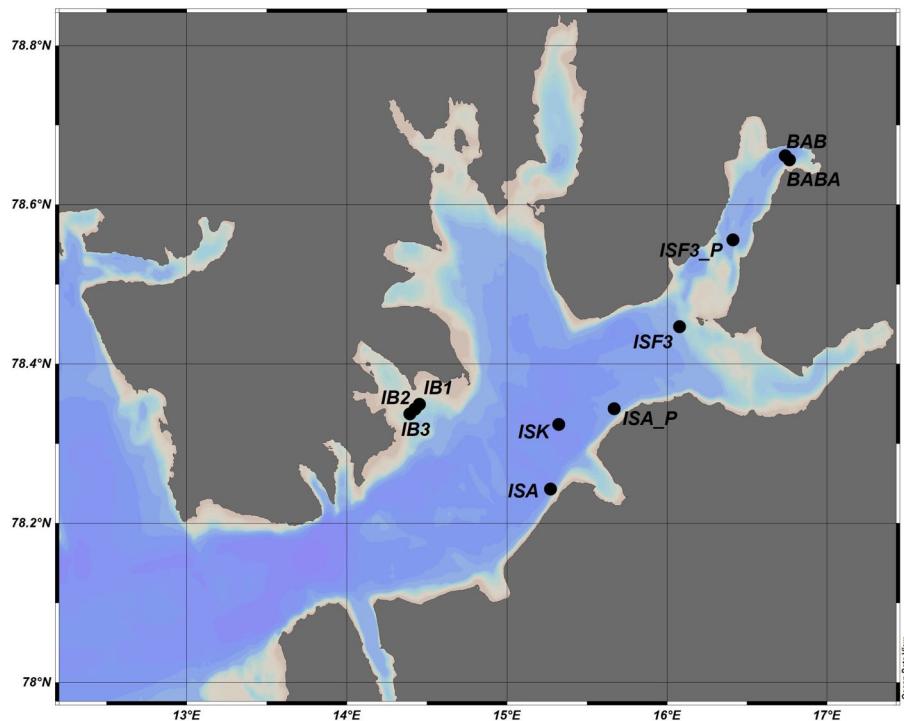



Fig. 7.1 Map of sampling stations of the Laboratory of Plankton Ecology (PEP) and the Laboratory of Pelagic Biocenosis Functioning (PFBP) in Isfjorden during the AREX2025 Leg IVb.

#### *Further processing of data and collected samples*

Stable isotope analyses and genetic analyses of selected zooplankton individuals will be carried out in specialized laboratories.

### **7.3 Detailed description of biological measurements – plankton (PFBP)**

#### *Description of methods and tools*

The research methods and measuring equipment used by the Laboratory of Pelagic Biocenosis Functioning during Leg IIIb did not differ from those applied during Leg IIIa, with the exception of the plankton net: in the studies conducted in Isfjorden, the WP2-180 net was replaced by the WP2-100 net. A detailed description of the remaining methods is provided in Section 6.3.

#### *Description of measured parameters and collected samples*

In Isfjorden, the studies carried out by the Laboratory of Pelagic Biocenosis Functioning focused on measurements of zooplankton abundance, distribution, and taxonomic composition, as well as marine aggregates, using the UVP along a transect following the fjord axis, from station BAB through ISF3 to station ISA (Fig. 7.1). At these stations—unlike at all previous ones—zooplankton samples were collected using a WP2 net with a mesh size of 100 µm. Additional UVP measurements were performed at the intermediate stations along this transect, i.e., ISF3\_P and ISA\_P.

The PFBP team also participated in the 24-hour water-column monitoring conducted at station BABA. During this period, a vertical UVP profile from the surface to the bottom was carried out every hour. Data were also collected at stations IB1, IB2, IB3, and ISK.

All collected samples were properly preserved in accordance with the procedures described in Section 6.3 and stored until further analyses.

In addition, hydrographic measurements using the SBE911plus CTD system were conducted at all plankton stations.

Table 7.3 List of plankton stations of the Pelagic Biocenosis Functioning Laboratory (PFBP) during the AREX2025 Leg IIIb.

| Station | Location                           | Depth(m) | Latitude (deg min N) | Longitude (deg min E) | Sampling gear |
|---------|------------------------------------|----------|----------------------|-----------------------|---------------|
| IB1     | Borebukta                          | 37       | 78 20.965            | 14 27.235             | UVP           |
| IB2     | Borebukta                          | 39       | 78 20.621            | 14 25.512             | UVP           |
| IB3     | Borebukta                          | 57       | 78 20.239            | 14 23.699             | UVP           |
| ISA     | Isfjorden/Adventfjorden            | 165      | 78 14.578            | 15 16.392             | UVP, WP2/100  |
| ISA_P   | Isfjorden                          | 152      | 78 20.644            | 15 40.201             | UVP           |
| ISF3    | Isfjorden - Billefjorden mouth     | 90       | 78 26.807            | 16 04.699             | UVP, WP2/100  |
| ISF3_P  | Isfjorden/Billefjorden             | 114      | 78 33.354            | 16 24.744             | UVP           |
| BAB     | Isfjorden/Billefjorden inner basin | 183      | 78 39.684            | 16 44.316             | UVP, WP2/100  |
| ISK     | Isfjorden - central basin          | 269      | 78 19.460            | 15 19.460             | UVP           |
| BABA    | Isfjorden/Billefjorden inner basin | 127      | 78 39.383            | 16 45.815             | UVP           |

#### *Further processing of data and collected samples*

The samples will be subjected to qualitative and quantitative analyses at the Institute of Oceanology, Polish Academy of Sciences (IO PAN). The UVP measurements have been saved on an external drive. Further data processing and analysis will be carried out at IOPAN after the cruise.

## **7.4 Detailed description of biological measurements – benthos**

#### *Description of methods and tools*

The research methods and measurement equipment used by the Laboratory of Benthic Ecology and Meiofauna during Leg IIIb did not differ from those applied during Leg IIIa. A detailed description is provided in Section 6.4.

#### *Description of measured parameters and collected samples*

As in the case of Leg IIIa, the research conducted during Leg IIIb aimed at a detailed analysis of benthic biodiversity and selected groups of organisms in the context of their spatial distribution and community structure. Seafloor video surveys were carried out, and sediment samples were collected at stations located in different parts of Isfjorden (Table 7.4; Fig. 7.3).

Within the framework of the DRAGONnest project and the activities of the Meiofauna Laboratory, three Van Veen grab samples were collected at most stations, of which two were used for the extraction of Kinorhyncha individuals and one for metagenetic analyses. Extraction was performed using the “bubble and blot” method, and sediments intended for genetic analyses were frozen in sterile bags immediately after collection.

At each station, three replicate samples for qualitative and quantitative analyses of meiofaunal assemblages were also collected using a Box Corer. In addition, a set of samples for the analysis of the physicochemical properties of surface sediments was taken from the Box Corer: samples for chlorophyll *a* analysis from the 0–2 cm layer, and samples for granulometric analysis as well as carbon and nitrogen content from the 0–5 cm layer. At most stations, the collection of bottom sediments for taxonomic and environmental analyses was accompanied by seafloor video surveys documenting the occurrence of megafaunal organisms. In the vicinity of station BABA, not only seafloor video recordings were performed, but gelatinous plankton (jellyfish) was also collected in order to assess their carbon content and to estimate the magnitude of carbon transfer from the water column to the seabed mediated by these organisms (the “Medusa” project initiated by PEB and PZRP).

In addition, hydrographic measurements using the SBE911plus CTD system were carried out at all benthic stations.

Table 7.4 List of benthic stations of the Benthic Ecology Laboratory and the Meiofauna Laboratory

| Station | Location                | Depth(m) | Latitude<br>(deg min N) | Longitude<br>(deg min E) | Sampling gear              |
|---------|-------------------------|----------|-------------------------|--------------------------|----------------------------|
| IA1     | Adolfbukta              | 87       | 78 39.221               | 16 49.628                | Van Veen, Box core         |
| IA2     | Adolfbukta              | 173      | 78 39.869               | 16 47.105                | Van Veen, Box core, camera |
| IP1     | Petuniabukta            | 31       | 78 40.422               | 16 31.121                | Van Veen, Box core, camera |
| IB1_S   | Billefjorden            | 66       | 78 38.052               | 16 27.124                | Van Veen, Box core, camera |
| IY1     | Ymerbukta               | 47       | 78 16.120               | 13 58.021                | Van Veen, camera           |
| IY2     | Ymerbukta               | 46       | 78 16.116               | 13 59.273                | Van Veen, camera           |
| IY3     | Ymerbukta               | 37       | 78 16.132               | 14 00.764                | Van Veen, camera           |
| T4F     | Isfjorden-central basin | 228      | 78 17.346               | 14 57.857                | Van Veen                   |
| ID1     | Dicksonfjorden          | 41       | 78 47.653               | 15 17.480                | Van Veen, Box core, camera |
| IDS     | Dicksonfjorden          | 69       | 78 42.064               | 15 19.654                | Van Veen, Box core, camera |
| ID6     | Dicksonfjorden          | 15       | 78 36.637               | 15 06.808                | Van Veen                   |
| IE3     | Ekmanfjorden            | 92       | 78 34.285               | 14 44.183                | Van Veen, Box core, camera |
| IE2     | Ekmanfjorden            | 42       | 78 37.554               | 14 42.352                | Van Veen, Box core, camera |
| SBI1    | Billefjorden            | 138      | 78 38.447               | 16 34.368                | Van Veen, Box core, camera |
| SBI2    | Billefjorden            | 136      | 78 35.388               | 16 27.503                | Van Veen, Box core, camera |
| SBI3    | Billefjorden            | 53       | 78 30.679               | 16 16.387                | Van Veen, Box core, camera |
| SBI4    | Billefjorden            | 72       | 78 28.206               | 16 04.330                | Van Veen, Box core, camera |
| IB1     | Borebukta               | 37       | 78 20.965               | 14 27.235                | camera                     |
| IB2     | Borebukta               | 39       | 78 20.621               | 14 25.512                | camera                     |
| IB3     | Borebukta               | 57       | 78 20.239               | 14 23.699                | camera                     |

|        |                                      |     |           |           |        |
|--------|--------------------------------------|-----|-----------|-----------|--------|
| ISF3   | Isfjorden-Billefjorden mouth         | 90  | 78 26.807 | 16 04.699 | camera |
| ISF3_P | Isfjorden                            | 114 | 78 33.354 | 16 24.744 | camera |
| BAB    | Isfjorden/Billefjorden - inner basin | 183 | 78 39.684 | 16 44.316 | camera |
| BABA   | Isfjorden/Billefjorden - inner basin | 127 | 78 39.383 | 16 45.815 | camera |

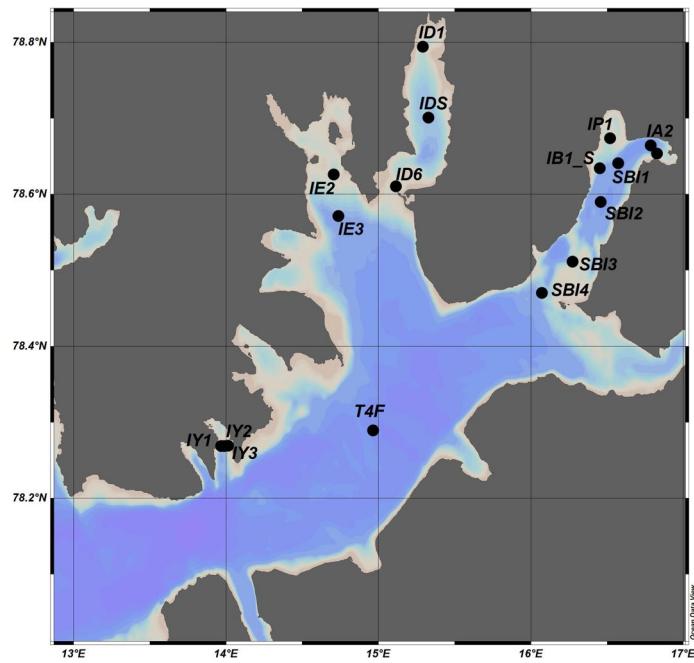



Fig. 7.2 Map of benthic stations in Isfjorden (meiofauna).

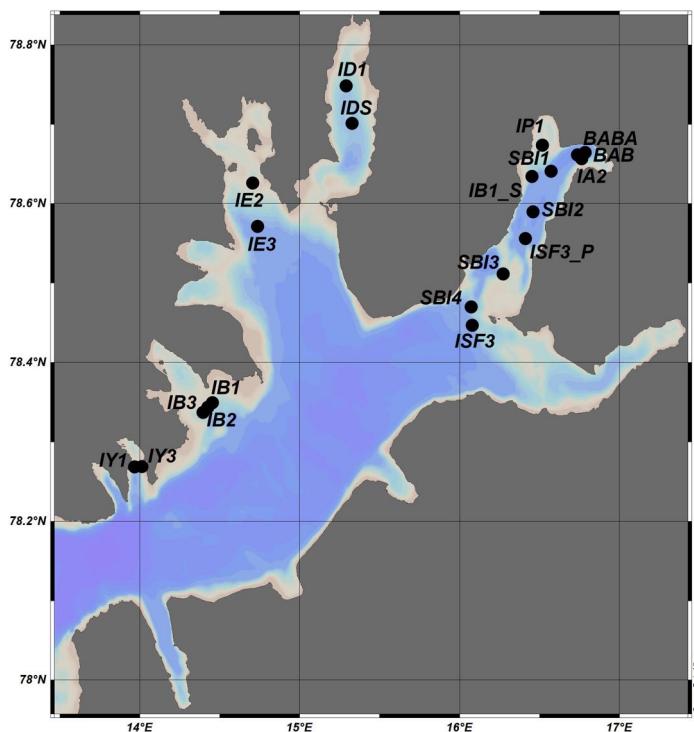



Fig. 7.3 Map of benthic stations (megafauna) in Isfjorden where seabed video surveys were conducted during the AREX2025 Leg IIIb.

### *Further processing of data and collected samples*

Preserved meiofauna samples will be subjected to qualitative and quantitative analyses in the laboratories of the Ecology Department at IOPAN. Physicochemical analyses of sediments will be carried out partly at IOPAN and partly outsourced to external institutions. Samples for (meta)genetic analyses will be prepared in IOPAN laboratories and subsequently sent for sequencing to external companies. The analysis of the obtained results will provide important information on the benthic biodiversity of Isfjorden and will contribute to improving our understanding of the ecology and evolution of poorly known groups of organisms, such as Kinorhyncha.

## **7.5 Detailed description of optical measurements**

### *Description of methods and tools*

The measurement equipment used by the Marine Remote Sensing Laboratory and the Marine Biophysics Laboratory during Leg IIIb did not differ from that used during Leg IIIa. A detailed description is provided in Section 6.5.

### *Description of measured parameters and collected samples*

In addition to the in situ measurements performed using the C-OPS and TRIOS instruments, seawater samples were also collected with a bathometer from two layers: 0–5 m (surface waters) and from the depth of maximum chlorophyll concentration, as determined from temperature, salinity, and chlorophyll *a* (Chl *a*) profiles acquired immediately prior to sampling. Furthermore, the water was preserved in borosilicate glass bottles and stored for subsequent laboratory analyses. A description of the analyzed seawater parameters is provided in Section 6.5. The list of optical sampling stations for Leg IIIb is given in Table 7.5 and shown in Figure 7.4.

Although the optical team had not originally planned to conduct measurements in Isfjorden, changes to the cruise schedule resulted in optical observations being carried out at five stations located in different parts of Isfjorden. In addition, the team participated in the 24-hour water column monitoring conducted at station BABA. During this period, optical measurements were performed and water samples were collected every four hours for further analyses.

Table 7.5 List of marine optics stations in Isfjorden during the AREX2025 Leg IIIb.

| Station | Location                     | Depth(m) | Latitude<br>(deg min N) | Longitude<br>(deg min E) | Sampling gear                             |
|---------|------------------------------|----------|-------------------------|--------------------------|-------------------------------------------|
| ISF3    | Isfjorden-Billefjorden mouth | 90       | 78 26.807               | 16 04.699                | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| ISK     | Isfjorden inner basin        | 269      | 78 19.460               | 15 19.460                | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| MONI6   | Nordfjorden                  | 143      | 78 31.110               | 14 56.502                | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |

|       |                                     |     |           |           |                                           |
|-------|-------------------------------------|-----|-----------|-----------|-------------------------------------------|
| MON15 | Isfjorden central basin             | 227 | 78 23.192 | 15 11.674 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| MON13 | Isfjorden outer basin               | 284 | 78 09.266 | 14 00.691 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |
| BABA  | Isfjorden/Billefjorden- inner basin | 127 | 78 39.383 | 16 45.815 | C-OPS, TRIOS, bbe Fluoroprobe, bathometer |

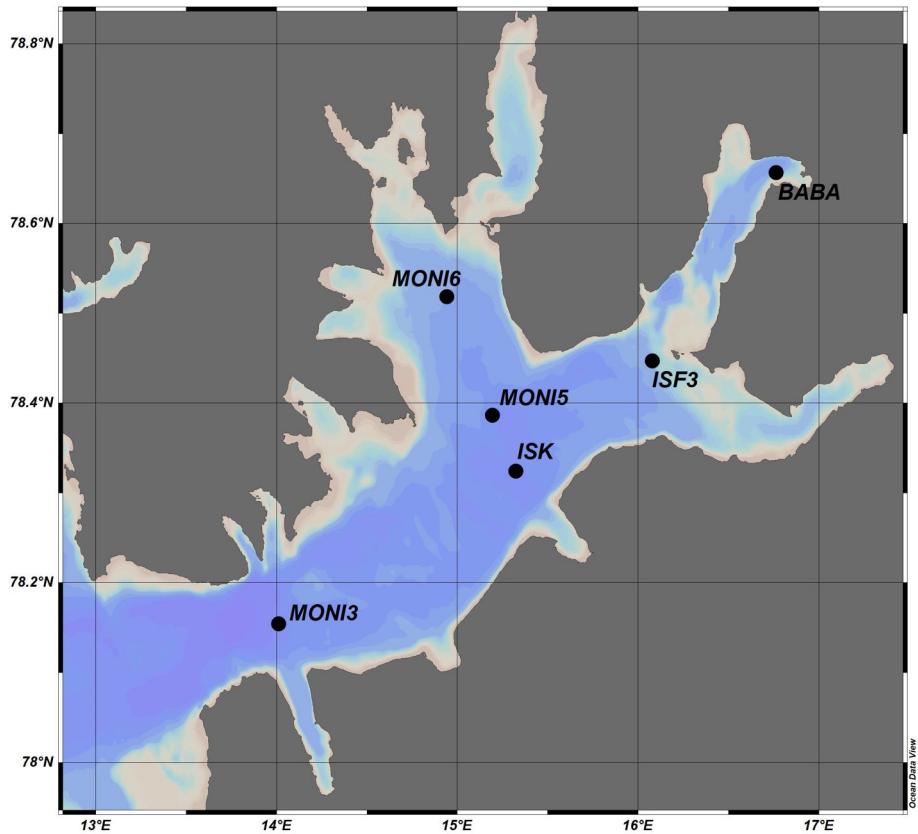



Fig. 7.4 List of marine optics stations in Isfjorden during the AREX2025 Leg IIIb.

#### *Further processing of data and collected samples*

Samples collected on filters and water samples intended for FDOM and DOC analyses were appropriately preserved and stored under suitable conditions until their subsequent laboratory analyses at IOPAN.

### **7.6 Detailed description of marine chemistry measurements**

#### *Description of methods and tools*

The research methods and measurement equipment used by the Polar Regions Pollution Laboratory during Leg IIIb did not differ from those applied during Leg IIIa. A detailed description is provided in Section 6.6.

#### *Description of measured parameters and collected samples*

Similarly to the studies conducted in Hornsund, investigations in Isfjorden also focused on contamination of bottom sediments, waters, and suspended matter by heavy metals, organic pollutants, and radioactive isotopes, as well as on the degree of contamination of benthic

organisms by these compounds in glacier-proximal bays. Samples were collected in the glacier bays Borebukta and Ymerbukta (Table 7.6; Fig. 7.5). In addition, bottom trawling was performed twice at station BABA in order to collect macro- and megafauna organisms for the newly initiated “Meduza” project, which investigates carbon transfer by gelatinous plankton to bottom sediments. To determine sediment accumulation rates in areas affected by enhanced meltwater discharge, a Nemisto sediment core was collected at station IB1\_S in the vicinity of Pyramiden.

Table 7.6 List of marine chemistry stations in Isfjorden during Leg IIIb.

| Station | Location                             | Depth(m) | Latitude (deg min N) | Longitude (deg min E) | Sampling gear                         |
|---------|--------------------------------------|----------|----------------------|-----------------------|---------------------------------------|
| IB1_S   | Billefjorden                         | 66       | 78 38.052            | 16 27.124             | Nemisto                               |
| IY1     | Ymerbukta                            | 47       | 78 16.120            | 13 58.021             | Nemisto, Van Veen, dredge, bathometer |
| IY2     | Ymerbukta                            | 46       | 78 16.116            | 13 59.273             | Nemisto, dredge, Van Veen, bathometer |
| IY3     | Ymerbukta                            | 37       | 78 16.132            | 14 00.764             | Van Veen, dredge, bathometer          |
| IB1     | Borebukta                            | 37       | 78 20.965            | 14 27.235             | Nemisto, Van Veen, dredge, bathometer |
| IB2     | Borebukta                            | 39       | 78 20.621            | 14 25.512             | Nemisto, Van Veen, dredge, bathometer |
| IB3     | Borebukta                            | 57       | 78 20.239            | 14 23.699             | Nemisto, Van Veen, dredge, bathometer |
| BABA    | Isfjorden/Billefjorden - inner basin | 127      | 78 39.383            | 16 45.815             | dredge                                |

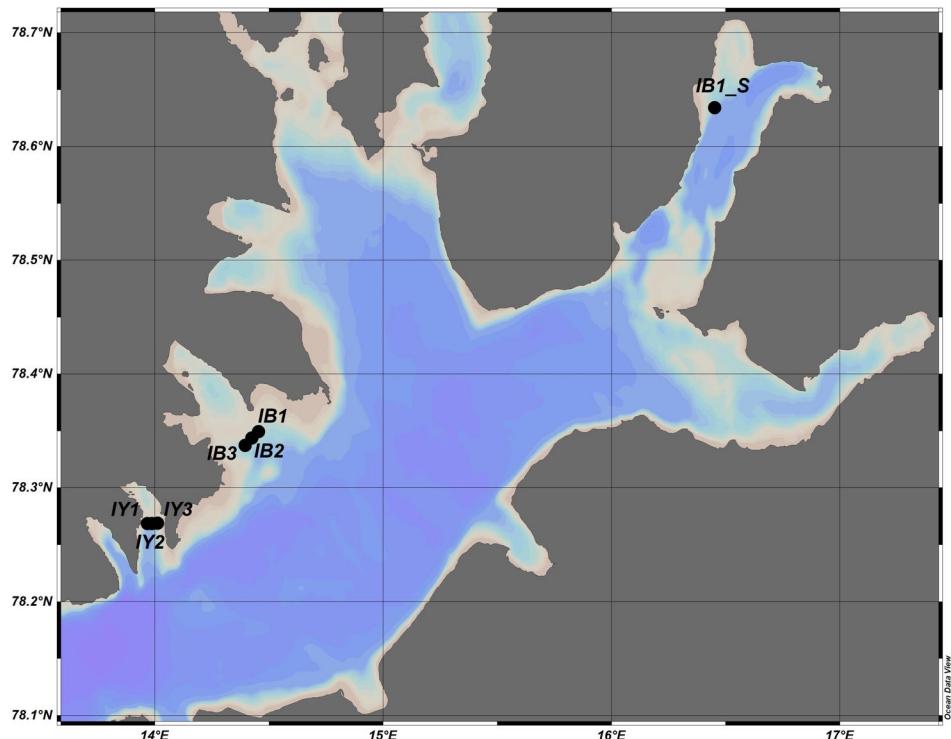



Fig. 7.5 Map of marine chemistry stations during the AREX2025 Leg IIIb.

#### *Further processing of data and collected samples*

Similarly to the samples collected in Hornsund, laboratory analyses of the suspended matter, bottom sediments, and benthic organisms collected in Isfjorden will include the determination of selected contaminants: heavy metals (AAS and ICP-MS) and  $^{137}\text{Cs}$  (gamma analyzer). In addition, sediment accumulation rates (using the  $^{210}\text{Pb}$  method) and organic carbon content (CHN) will be determined. These analyses will be carried out at the Polar Regions Pollution Laboratory. Analyses of organic contaminant concentrations will be conducted subsequently at the Geotoxicology Laboratory. Depending on available funding, microbiological analyses will then be performed in collaboration with the Marine Genetics Department.

## **7.7 Detailed description of oceanographic measurements**

#### *Description of methods and tools*

The measurement equipment used by Observational Oceanography Lab during Leg IIb did not differ from that applied during Leg IIIa. A detailed description is provided in Section 6.7.

#### *Description of measured parameters and collected samples*

Due to a change in the cruise plan and the necessity to remain in Isfjorden, the original research program of the Observational Oceanography Lab could not be implemented. Instead, it was replaced by a comprehensive water-column study in the Billefjorden area. It was decided to carry out a 24-hour monitoring of the physicochemical parameters of seawater at station BABA. For this purpose, CTD measurements were conducted hourly from the surface to the bottom. In parallel, measurements using the UVP camera were performed. In addition, every 4 hours, optical measurements were carried out, water samples were collected for FDOM and DOC analyses, and zooplankton samples were taken.

Hydrographic measurements using the SBE9/11+ CTD system (detailed description in Chapter 5) also accompanied the studies conducted by the other teams and were performed at all research stations during this leg. The list of stations at which hydrographic measurements were carried out is provided in Table 7.1. The location of station BABA is shown, among others, in Fig. 7.1.

#### *Further processing of data and collected samples*

The collected data were recorded and will be further processed and analyzed at IOPAN.

## 8 Measurements and sampling program during AREX 2025 Leg IV

### 8.1 Detailed description of coastal measurements in Isfjorden

The intertidal zone inventory included photographic documentation of shoreline type and algal cover, counting of macroplastic items, and photographic surveys along 100-m transects, as well as the collection of intertidal invertebrate samples and the recording of benthic organisms using a drop-down camera. All data are presented on the project website.

Table 8.1. Measurement stations of Leg IV in Isfjorden during the AREX2025 cruise.

| Nr | Place name/<br>GPS nr                | Latitude    | Longitude   | Date<br>time      | Coast<br>type                 | Plastic count<br>area | Mytilus<br>-living | Fucus | Littorina | Gamm.<br>oceanicus | Gamm.<br>setosus | Remarks                                                            |
|----|--------------------------------------|-------------|-------------|-------------------|-------------------------------|-----------------------|--------------------|-------|-----------|--------------------|------------------|--------------------------------------------------------------------|
| 1  | Isfjord Radio<br>47                  | 78°03.831'  | 13°36.640'  | 25.08.22<br>22.00 | gravel beach, rock            | 1 x 200m              | yes                | yes   | yes       | 41                 | 0                |                                                                    |
| 2  | Trygghamma 2<br>48                   | 78°15.0807' | 13°42.4732' | 25.08.23<br>10.00 | stones on the<br>mud, skjerra | 2000m                 | yes                | yes   | yes       | 20                 | 6                | minky whale<br>next to the ship,<br>5 harbor seals on<br>the shore |
| 3  | Trygghamma 3<br>49                   | 78°15.5720' | 13°42.8885' | 25.08.23          |                               | 2000m                 |                    |       |           | 25                 | 5                |                                                                    |
| 4  | Ekmanfjorden<br>50                   | 78°38.6666' | 14°45.4068' | 25.08.23<br>19.00 | stony and gravel<br>beach     | 2 x 100m              | no                 | yes   | yes       | 0                  | 46               |                                                                    |
| 5  | Dicksonfjorden -<br>Kapp Smith<br>51 | 78°39.6754' | 15°13.7440' | 25.08.24<br>10.00 | stony and gravel<br>beach     | 4 x 100m              | yes                | yes   | yes       | 0                  | 47               |                                                                    |
| 6  | Billefjorden -<br>Adolbfukta<br>52   | 78°40.2715' | 16°51.9805' | 25.08.24<br>22.00 | stony beach                   | 4 x 100m              | no                 | yes   | no        | 4                  | 52               | single white<br>whale                                              |
| 7  | Tempelfjorden<br>53                  | 78°23.9594' | 17°09.6716' | 25.08.25<br>10.00 | stony and gravel<br>beach     | 4 x 100m              | no                 | yes   | no        | 16                 | 39               |                                                                    |
| 8  | Grumant<br>55                        | 78°10.6667' | 15°07.0514' | 25.08.25<br>23.00 | stony and gravel<br>beach     | 200m                  | no                 | yes   | yes       | 3                  | 62               |                                                                    |

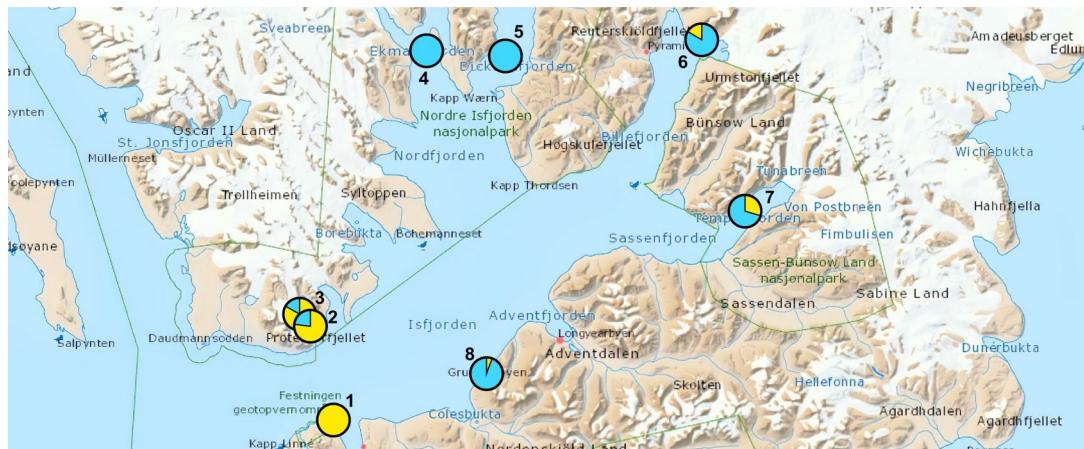



Fig. 8.1 Map of stations with results of the analysis of the occurrence of boreal and Arctic amphipods (Gammarus) during Leg IV of the AREX2025 cruise.

#### Further processing of data and collected samples

Data are presented on the project website, currently being prepared for publication:

[https://old.iopan.pl/projects/key\\_coastal\\_points/reports.html](https://old.iopan.pl/projects/key_coastal_points/reports.html)

## 9 Measurements and sampling program during AREX 2025 Leg V

### 9.1 General information about Leg V

Between 28 August and 6 September, i.e., during the 10-day period allocated for measurement activities in Leg V, the weather conditions along the ship's route allowed empirical measurements and sample collection to be carried out on 8 days at 8 locations (measurement stations) (see Table 9.1). These included, among others, two ad hoc stations selected along the ship's route from the coast of the Svalbard archipelago to the northern coast of Norway (stations that in the current or previous years were designated as "M4" and "V12"). In addition, measurements were conducted at 6 stations out of the 7 originally declared and planned in the AREX 2025 cruise programme (stations IO10 to IO04, located along the Norwegian coast). Due to adverse weather conditions, measurements at one of the planned stations (IO06) had to be abandoned.

Furthermore, in order to save time and reduce transit distance, optical and biogeochemical measurements near the planned stations IO10, IO09, IO08, IO07, and IO05 were initiated at locations that had originally been intended as the end points of acoustic transects. Therefore, an additional designation "bis" was introduced in the station codes to distinguish these locations from the stations sampled in the previous year during the AREX2024 expedition.

Table 9.1. List of stations occupied during the AREX2025 Leg V.

| Station number/day | Station/section start | Date       | Start latitude | Start longitude |
|--------------------|-----------------------|------------|----------------|-----------------|
| 1                  | M4                    | 2025-08-28 | 76° 00.037' N  | 014° 59.891' E  |
| 2                  | V12                   | 2025-08-29 | 72° 45.409' N  | 019° 31.673' E  |
| 3                  | IO10bis               | 2025-08-31 | 67° 45.251' N  | 010° 54.292' E  |
| 4                  | IO09bis               | 2025-09-01 | 66° 13.457' N  | 010° 03.950' E  |
| 5                  | IO08bis               | 2025-09-02 | 64° 19.462' N  | 008° 29.889' E  |
| 6                  | IO07bis               | 2025-09-03 | 63° 11.921' N  | 006° 10.092' E  |
| 7                  | IO05bis               | 2025-09-05 | 59° 13.949' N  | 004° 27.249' E  |
| 8                  | IO04                  | 2025-09-06 | 57° 37.390' N  | 007° 31.363' E  |

### 9.2 Detailed description of marine optics measurements

Optical measurements, together with accompanying measurements of the basic hydrological characteristics of seawater and the main biogeochemical properties of optically relevant constituents, were carried out for the purposes of the Laboratory of Marine and Atmospheric Optics and the Laboratory of Marine Remote Sensing at IOPAN. Measurements and sampling at the stations were conducted during daytime, close to local solar noon. In situ measurements at the stations and sample collection included the following activities:

- measurements of salinity, temperature, and density of seawater at the surface and in vertical profiles down to approximately 80 m using a CTD probe (SBE9/11+);

- b) visual determination by an observer of the Secchi disk visibility range ( $zSD$ ) and taking digital photographs with an “RGB” camera floating on the sea surface, documenting the colour of the disk submerged to a depth of  $\frac{1}{2} zSD$  and the colour of the surrounding water;
- c) in situ measurements of the spectral values of the volume scattering coefficient ( $bb(\lambda)$ ) using a HydroScat-4 instrument (Hobi Labs), carried out just below the surface and in vertical profiles down to approximately 80 m;
- d) radiometric measurements at the sea surface (spectra of downwelling irradiance  $Ed(0)$  and upwelling radiance  $Lu(0)$ ) required to determine the spectral remote-sensing reflectance of the sea ( $Rrs(\lambda)$ ), using radiometers installed on the ship’s deck and floating on the water surface (TriOS radiometer set);
- e) collection of surface seawater samples (approximately 20–40 L) for analyses conducted in the shipboard laboratory and later in the onshore laboratories of IOPAN.

The following activities were then carried out directly in the shipboard laboratory on the collected water samples:

- a) preparation of seawater samples and measurements of the spectral light attenuation coefficient due to the sum of suspended and dissolved substances in seawater ( $cn(\lambda)$ ), the light absorption coefficient of dissolved substances ( $aCDOM(\lambda)$ ), and calculations of the spectral light attenuation coefficient of particles ( $cp(\lambda)$ ), using a Viper photometer (TriOS);
- b) preparation of suspended matter samples retained on filters for storage, in order to later determine (in the onshore IOPAN laboratories) the mass concentration of total suspended matter (SPM), the concentrations of organic and inorganic fractions (POM and PIM), chlorophyll a concentration (Chla), concentrations of other phytoplankton pigments, as well as to measure the spectral absorption coefficients of all suspended particles ( $ap(\lambda)$ ) and, separately, of phytoplankton and non-algal particles ( $aph(\lambda)$  and  $ad(\lambda)$ );
- c) preparation of preserved water samples for later analyses (in the onshore IOPAN laboratories) of particle size distributions (PSD);
- d) preparation of water samples for later reference measurements (in the onshore IOPAN laboratories) of the spectral light absorption coefficient of dissolved substances ( $aCDOM(\lambda)$ ).

The optical measurements and the accompanying measurements listed above were conducted at all 8 measurement stations previously listed in Table 9.1.

#### *Further processing of data and collected samples*

In the case of the collected data on the optical and biogeochemical properties of seawater, the results of the direct measurements have already been preliminarily archived, and the prepared samples of suspended matter and water have been and/or are being stored under appropriate conditions (frozen or refrigerated) until further analyses in the onshore laboratories of IOPAN. The collected data on selected inherent optical properties will enable the calculation of additional optical quantities, including the spectral particle scattering and backscattering coefficients ( $bp(\lambda)$  and  $bbp(\lambda)$ ). The recorded RGB images of the submerged

Secchi disk and the surrounding water body will allow the derivation of a quantitative descriptor of water colour based on the trichromatic colour perception mechanism, i.e. the hue angle ( $\alpha$ ), as well as the assignment of the investigated waters to the traditional Forel–Ule colour scale classes (FU index). The radiometric measurements will enable the calculation of the spectra of remote-sensing reflectance of the sea ( $Rrs(\lambda)$ ).

### 9.3 Detailed description of marine acoustic measurements

Measurements were carried out in the Norwegian Sea and the North Sea. Data were collected along six hydroacoustic transects. In addition, in situ measurements of the physical parameters of seawater were performed at the beginning, middle, and end of each transect. Furthermore, prior to the start of the hydroacoustic surveys, a calibration of the 70 kHz transducer of the SIMRAD EK-60 echosounder was performed, and an attempt was made to calibrate the 120 kHz transducer of the same echosounder. For technical reasons, the calibration of the 120 kHz transducer could not be completed. Due to adverse hydrometeorological conditions on 04 June 2025, it was decided not to carry out measurements along transect 6 and instead to perform measurements along an additional transect designated as transect 4. All surveys were conducted in the period from 29 August 2025 to 06 September 2025. The length of individual transects was approximately 12 nautical miles. The locations of the transects and the stations for measurements of the physical parameters of seawater are shown in Fig. 9.1, while details of the CTD measurements are presented in Table 9.2.

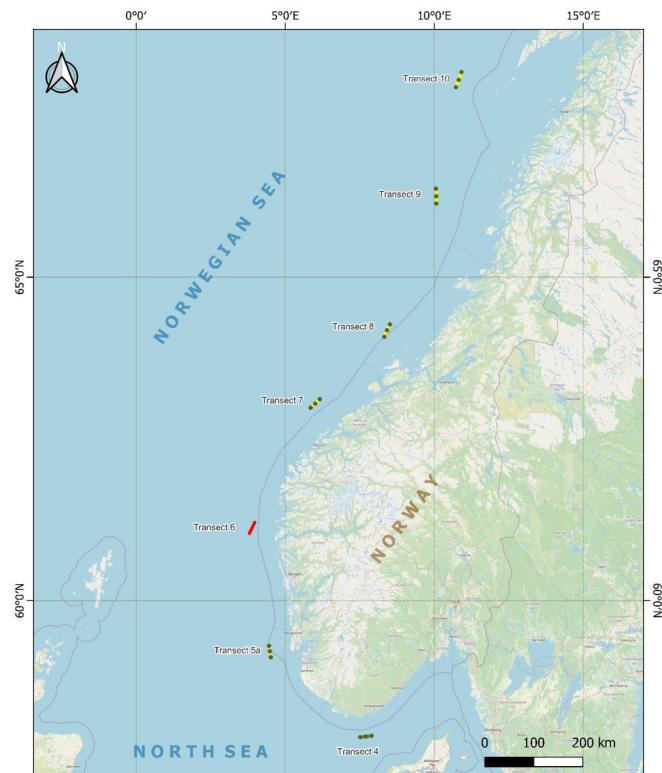



Fig. 9.1 Map of stations and sections with marine optical and acoustic measurements occupied during the AREX2025 leg V. The red line indicate cancelled section/station.

Table 9.2. Location of sections with acoustic measurements during the ARXE2025 leg V.

| Section number | Start          |               | Stop           |               | Length (Nm)                             | Date and time (UTC)      | Remarks    |
|----------------|----------------|---------------|----------------|---------------|-----------------------------------------|--------------------------|------------|
|                | Longitude (DM) | Latitude (DM) | Longitude (DM) | Latitude (DM) |                                         |                          |            |
| 10             | 67°45.025'N    | 10°54.543'E   | 67°33.746'E    | 10°43.928'E   | 11,97                                   | 31.08.2025 11:38 – 15:06 | Done       |
| 9              | 66°13.386'N    | 10°04.150'E   | 66°01.431'E    | 10°04.342'E   | 11,97                                   | 01.09.2022 10:06 – 14:23 | Done       |
| 8              | 64°19.397'N    | 08°30.261'E   | 64°08.397'E    | 08°19.525'E   | 11,98                                   | 02.09.2025 11:16 – 14:56 | Done       |
| 7              | 63°12.710'N    | 06°09.946'E   | 63°04.774'N    | 05°51.316'E   | 11,60                                   | 03.09.2025 11:06 – 14:51 | Done       |
| 6              | 61°17.150'N    | 03°58.760'E   | 61°06.350'N    | 03°47.970'E   | Cancelled due to bad weather conditions |                          |            |
| 5a             | 59°13.814'N    | 04°27.305'E   | 59°02.010'N    | 04°30.873'E   | 11,92                                   | 05.09.2025 11:21 – 15:00 | Done       |
| 4              | 57°37.407'N    | 07°31.327'E   | 57°38.807'N    | 07°53.538'E   | 11,98                                   | 06.09.2025 10:39 – 14:05 | Additional |

Table 9.3. Lista of CTD stations during the AREX2025 leg V.

| Station      | Longitude (DM) | Latitude (DM) | Date and time (UTC) | Max. depth [m] |
|--------------|----------------|---------------|---------------------|----------------|
| IO_10_start  | 67°45.296'N    | 10°54.986'E   | 31.08.2025 10:39    | 105            |
| IO_10_polowa | 67°39.398'N    | 10°49.307'E   | 31.08.2025 13:14    | 104            |
| IO_10_koniec | 67°33.751'N    | 10°43.758'E   | 31.08.2025 15:20    | 173            |
| IO_9_start   | 66°13.514'N    | 10°03.715'E   | 01.09.2025 09:40    | 244            |
| IO_9_polowa  | 66°07.369'N    | 10°04.253'E   | 01.09.2025 12:21    | 280            |
| IO_9_koniec  | 66°01.405'N    | 10°04.325'E   | 01.09.2025 14:37    | 271            |
| IO_8_start   | 64°19.272'N    | 08°30.816'E   | 02.09.2025 10:43    | 294            |
| IO_8_polowa  | 64°14.123'N    | 08°24.938'E   | 02.09.2025 12:52    | 296            |
| IO_8_koniec  | 64°08.311'N    | 08°19.534'E   | 02.09.2025 15:19    | 295            |
| IO_7_start   | 63°12.699'N    | 06°09.724'E   | 02.09.2025 10:42    | 107            |
| IO_7_polowa  | 63°08.592'N    | 06°00.268'E   | 03.09.2025 12:56    | 144            |
| IO_7_koniec  | 63°04.774'N    | 05°51.312'E   | 03.09.2025 15:03    | 195            |
| IO_5a_start  | 59°13.741'N    | 04°27.426'E   | 05.09.2025 10:43    | 255            |
| IO_5a_polowa | 59°08.167'N    | 04°29.065'E   | 05.09.2025 13:04    | 252            |
| IO_5a_koniec | 59°01.950'N    | 04°31.018'E   | 05.09.2025 15:15    | 256            |
| IO_4_start   | 57°37.435'N    | 07°31.216'E   | 06.09.2025 10:05    | 288            |
| IO_4_polowa  | 57°38.098'N    | 07°42.538'E   | 06.09.2025 12:15    | 291            |
| IO_4_koniec  | 57°38.892'N    | 07°53.894'E   | 06.09.2025 14:18    | 288            |

#### Description of methods and tools

The acquisition of hydroacoustic data along the research transects was carried out using a specialized scientific split-beam echosounder manufactured by Kongsberg SIMRAD (model EK-60). The 70 kHz and 120 kHz hydroacoustic transducers were mounted in a specially designed fairing attached to the side of RV *Oceania* using an aluminum pole.

For both transducers, calibration attempts were made and the obtained calibration values were intended to be implemented in the system software. In the case of the 120 kHz

transducer, this procedure could not be completed due to technical problems; therefore, archival calibration data were used to update the settings of this transducer.

Data were recorded along six transects while maintaining the vessel's speed at approximately 3.5–4 knots. Data acquisition lasted for about 3 hours and was conducted during the morning–afternoon hours in order to obtain comparable records. Due to adverse hydrometeorological conditions on 04 September 2025, data acquisition along transect 6 was not carried out. Instead, supplementary measurements were performed on 06 September 2025 along an additional transect designated as transect 4.

Hydroacoustic data acquisition was carried out using dedicated software provided by Kongsberg SIMRAD. Positioning of the research vessel during data recording was based on readings from a differential GPS receiver (Trimble MPS 865). In addition, the QINSy software (version 8.17.1) was used to correct the offsets of the installation locations of key components of the measurement system, such as the pole with the fairing and echosounder transducers, the GPS antenna, and the ship's gyrocompass. This approach minimized the positioning error of the Kongsberg SIMRAD echosounder transducers to approximately  $\pm 0.5$  m in the horizontal plane. After completion of the measurement campaign, the recorded data were copied to independent hard drives and securely archived.

To acquire data on the variability of the physical parameters of seawater, a CTD probe manufactured by Sea-Bird Electronics (SBE), model SBE 19plus, was used. Prior to the start of the measurement campaign, the probe was calibrated by the manufacturer. At each of the measurement stations listed in Table 9.2, the probe was lowered from the sea surface to the seabed at a speed of approximately  $1\text{ m s}^{-1}$ .

#### *Further processing of data and collected samples*

The data obtained during the 2025 measurement campaign have been thoroughly analysed, and a final report summarizing the results of the conducted studies has been prepared. These results will be compared with data collected during the AREX 2024 cruise, as well as with results obtained by the team from the University of Gdańsk, which carried out similar measurements from the *r/v Oceanograf* in close proximity to the Norwegian coast in 2024. Based on the combined dataset, a joint scientific publication will be prepared, focusing on the scattering properties of aggregated and individual biological objects occurring in the North Sea and the Norwegian Sea, in the context of changes in the physical parameters of seawater associated with the inflow of Baltic Sea water masses into these regions.

## **9.4 Detailed description of aerosol and meteorological measurements**

Due to changes and limitations in the composition of the scientific team during Leg V, aerosol and meteorological measurements requiring the presence of a dedicated operator were not conducted during the Leg V.

## 10 Summary of the AREX 2025 research cruise

The AREX 2025 research cruise took place from 1 July to 8 September 2025 and consisted of five legs, during which measurements were carried out in the eastern Norwegian and Greenland Seas, in Fram Strait and the southern Nansen Basin north of Svalbard, in the fjords of western Spitsbergen, and along the Norwegian coast during the return transit. The multidisciplinary research programme included oceanographic, meteorological and aerosol, optical, biogeochemical, as well as biological and ecological measurements. Due to a previously planned cruise to the Azores, the oceanic part of the AREX 2025 cruise was shortened and started in Longyearbyen, Svalbard.

The oceanic part of the AREX 2025 cruise was conventionally divided into Leg I, covering measurements between Bear Island and the southern Fram Strait, and Leg II, covering sections in the northern Fram Strait and north of Svalbard. Due to the shortening of this part of the cruise and the start of Leg I in Longyearbyen, the long-term sections V1 in the Barents Sea Opening and sections H and O in the Greenland Sea were not carried out. During Leg I, measurements were conducted along the standard sections V2, N, S, and Z, whereas during Leg II measurements were performed along the long-term sections EB2, EX, Y, WB, NB, and the additional section EB3 along the ice edge in Fram Strait. During Leg I, measurements had to be interrupted for more than two days because of adverse weather conditions, and the vessel sought shelter in Hornsund. Ice conditions during Leg II considerably limited the spatial extent of measurements along the northern sections.

In total, during the open ocean part of the cruise, CTD measurements covering the full water column were carried out at 175 stations, including 106 stations during Leg I and 69 stations during Leg II. At 174 stations, ocean currents were measured using LADCP, while currents in the upper layer (approximately 200 m) were continuously recorded using a VM-ADCP. At 16 CTD stations, water samples were collected for nutrient analyses, and at 6 selected deep stations, water samples were collected for salinity calibration. Continuous measurements of marine aerosols as well as atmospheric CO<sub>2</sub> and H<sub>2</sub>O concentrations were conducted, together with standard meteorological observations. For studies of the sea surface microlayer, samples were collected and surface-layer temperature and salinity measurements were carried out at 22 stations during Leg I. As part of the biological programme of the open ocean part of the cruise, 115 zooplankton faunal samples were collected at 39 research stations, including 107 stratified samples and 8 samples collected from the entire water column. During Leg II, two Core Argo floats were also deployed along section K, in the core and in the outer branch of Atlantic Water in the Greenland Sea.

The fjord part of the AREX cruise was divided into three legs (IIIa, IIIb, and IV), covering measurements in Hornsund and Isfjorden. Due to a serious technical failure of the vessel's winches, Leg IIIa started with a two-day delay, which significantly reduced the available measurement time. During Leg IIIa, measurements were carried out in Hornsund (68 stations) and in the Hornsund forefield ("Alczykowisko", 15 stations), including oceanographic,

biogeochemical, and biological observations and sampling at a total of 83 stations. For the purposes of long-term monitoring, samples were collected at 5 stations within Hornsund and at 9 stations in the forefield of the fjord. At all stations in Hornsund and its forefield, full-depth CTD profiles were conducted. For analyses of plankton abundance and its importance for little auks, samples were collected at 14 stations in the forefield and 27 stations inside the fjord. Due to an instrument failure, vertical UVP profiles were carried out instead of LOPC transects. For analyses of benthic biodiversity and specific taxonomic groups, benthic and surface sediment samples were collected at 29 stations, and seabed video recordings were carried out at 29 stations. At 14 stations in Hornsund, measurements and sampling were conducted for studies of the optical properties of seawater, including analyses of light absorption and scattering by dissolved and suspended constituents, spectral characteristics of vertical light attenuation profiles, and surface spectral reflectance. Seawater samples were also collected for analyses of chlorophyll concentration, pigments, light absorption, DOM, and DOC. At station N4 (the A-DBO key station), additional primary production measurements were carried out. For studies of chemical contamination of bottom sediments, water, and suspended matter, samples of water and surface sediments were collected at 4 stations in Hornsund.

Due to a failure of the ship's generator, prolonged repair works, and crew-related problems, the available measurement time during Leg IIIb of the AREX 2025 cruise was significantly shortened. As a result, the planned measurement and sampling programs in Kongsfjorden and Magdalenefjorden were not carried out. The vessel remained in Isfjorden, where the measurement programme was expanded within the limits of existing permits. During Leg IIIb, oceanographic, biogeochemical, and biological measurements and sampling were conducted at a total of 30 stations, including a series of 24-hour observations at station BABA. For studies of habitat and feeding preferences of sibling zooplankton species, samples were collected at 3 stations in Isfjorden. Measurements of abundance, distribution, and composition of zooplankton and marine aggregates using UVP were conducted at 9 stations and at the 24-hour BABA station. For analyses of benthic biodiversity and specific organism groups, water and surface sediment samples were collected at 16 stations in Isfjorden, and seabed video recordings were carried out at 21 stations. At 6 stations, measurements and sampling were conducted to study the optical properties of seawater, following the same protocol as in Hornsund. Similarly to Hornsund, studies of contamination of bottom sediments, water, and suspended matter were carried out at 8 stations in Isfjorden. At all stations in Isfjorden, full-depth CTD profiles were conducted, including the 24-hour series at station BABA.

During Leg IV of the AREX 2025 cruise, an inventory of the intertidal zone in Isfjorden was carried out, including photographic documentation of shoreline types and algal cover, macroplastic counts, photographic surveys along 100-m transects, sampling of intertidal invertebrates, and documentation of benthic organisms using a drop-down camera. This documentation was performed at 8 stations in different parts of Isfjorden.

During Leg V, covering the return transit, optical and acoustic measurements were conducted along the Norwegian coast. Optical measurements and sampling were carried out at 8 stations during the 8-day return route. In addition, acoustic measurements were conducted along 7 transects, each 12 nautical miles long, while the vessel was steaming at a speed of approximately 4 knots. At 6 transects, CTD measurements were carried out at the beginning, middle, and end of each transect. Leg V of the AREX 2025 cruise ended with the vessel's arrival in Gdańsk on 8 September 2025.