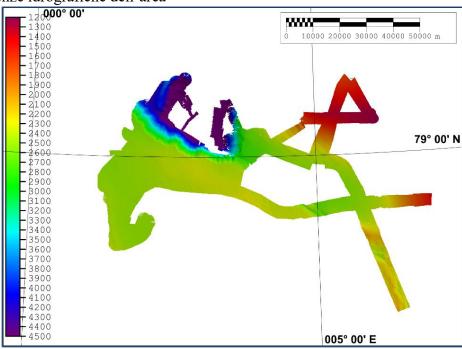
ISTITUTO IDROGRAFICO DELLA MARINA

	Relazione Tecnica – Idro-oceanografia DAPR (Data Acquisition and Processing Report)			
Tipo di Rilievo:	Area d'altura			
Numero di Rilievo	HN21_			
Ordine del rilievo	2			
Stato	Svalbard (NORVEGIA)			
Località	Molloy Hole and Vestnesa Ridge			
Periodo	02/07/21 - 07/07/21			
Vettori utilizzati per il rilievo	NRV ALLIANCE			
Metodo di acquisizione:	Multibeam			
Effettuato da:	Scientist in Charge: Prof. Roberta Ivaldi Capo Spedizione: CF (IDO) Maurizio DEMARTE			
Numero di Archivio	//			
Data	/1			

¹ Data dell'ultima revisione del documento

Sommario

1.	Intro	duzione	4
1	.1.	Compito assegnato	4
1	.2.	Scopo del rilievo	4
1	.3.	Criteri informativi della pianificazione	4
1	.4.	Suddivisione dell'area in sottozone	4
2.	Strun	nentazione	5
2	2.1.	Vettore	5
2	2.3.	Offset	5
2	2.4.	Sistema Multibeam	5
	2.4.1	. Ecoscandaglio impiegato	5
	2.4.2	. Sistemi di posizionamento, heading e attitude	6
	2.4.3	. Bativelocimetro	7
3.	Softw	vare di acquisizione e valorizzazione	7
4.	Meto	dologia di scandagliamento	7
4	l.1.	Copertura del rilievo	7
4	1.2.	Problematiche incontrate	7
5.	Quali	ty control	8
5	5.1.	Fase di acquisizione	8
	5.1.1	Problematiche occorse durante la fase di acquisizione	8
5	5.2.	Fase di elaborazione dati	8
	5.2.1	. Uncertainty Modeling	8
	5.2.2	. Vessel file	8
	5.2.3	Static draft	8
	5.2.4	. TPU	8
	5.2.5	. QC REPORT	9
6.	Conti	rollo cartografia in vigore – definizione delle aree ZOC	9
6	5.1.	Controllo e varianti alla cartografia in vigore	
6	5.2.	Relitti e pericoli per la navigazione	10
6	5.3.	Segnalamenti luminosi e boe	10
6	5.4.	Linea di costa, basi misurate, allineamenti e particolari cospicui	10
6	5.5.	Zone di Confidenza (ZOC) e qualità dei dati	
7.	Corre	zione dei fondali	
7	7.1.	Patch Tests	
7	7.2.	Marea e riporto dei fondali al datum verticale	
8.		teri del fondale	
9.		ra del fondale marino	
	9.1.	Metodologia di analisi del backscattering acustico	


9.2.	Analisi morfologica del fondale	11
10.	Campionamento del fondale marino	11
11.	Altre osservazioni / misurazione	12
11.1.	Osservazioni Ghiacci	12
11.2.	Osservazioni Superficiali di Marine Litter	12
11.3.	Niskin / Van Dorne	12
11.4.	Manta	12
11.5.	Acquisizioni CTD e velocità del suono	12
12.	Blocco firme e certificazione di qualità a standard IHO/S-44	14

1. Introduzione

1.1. Compito assegnato

Eseguire un rilievo idrografico nell'area di operazione ad Ovest delle Isole Svalbard, in particolare in corrispondenza del Molloy Hole e del Vestnesa Ridge.

Fornire mediante i dati acquisiti un contributo essenziale nelle zone indicate incrementando le conoscenze idrografiche dell'area

Area di scandagliamento

1.2. Scopo del rilievo

Acquisire i dati di fondale necessari all'aggiornamento della documentazione nautica all'interno dell'area assegnata.

Fornire mediante l'analisi del backscatter relativo al fondale il riconoscimento delle caratteristiche morfologiche peculiari nella zona di operazioni.

1.3. Criteri informativi della pianificazione

La pianificazione delle linee è avvenuta sul grid batimetrico della cartografia GEBCO/IBCAO con una risoluzione di 200m, sufficientemente ampio in modo da concentrare l'attenzione sulle strutture morfologiche di maggiore interesse. La pianificazione del rilievo è stata elaborata tenendo conto dell'ordine richiesto (Order 2 – S44 Edition 6th), della profondità media del fondale e prendendo in considerazione la survey effettuata durante le campagne High North nelle zona limitrofe.

1.4. Suddivisione dell'area in sottozone

N.N.

2. Strumentazione

2.1. Vettore

Per l'esecuzione dei rilievi è stata utilizzata NRV Alliance. Di seguito le caratteristiche principali del vettore:

Lunghezza: 93.0 m,Larghezza: 15.2 m;

- Immersione: 5.0 m, 7.0 m (max);

- Propulsione: 2MPG, 3SSG, Gas Turbine.

2.2. Equipaggiamento

La seguente tabella riassume la strumentazione in dotazione al vettore impiegata per l'esecuzione del rilievo in oggetto:

Strumento	Ditta e Modello
MBES	Kongsberg EM 302
Heading, Attitude and Positioning system	Kongsberg Seapath 330
Motion Reference Unit	Seatex MRU5E
Differential Corrections Demodulator	Fugro 3610 STARFIX L1
Sonda Multiparametrica	Seabird 911
SVS	Valeport miniSVS

2.3. Offset

Gli offset sono stati misurati in fase di installazione dalla ditta produttrice ed in seguito controllati a cura del personale tecnico di bordo. Le verifiche effettuate durante le calibrazioni periodiche hanno confermato la bontà degli stessi.

In annesso B, all'interno del relativo progetto di valorizzazione, il file .hvf (Hips Vessel File) utilizzato.

2.4. Sistema Multibeam

2.4.1. Ecoscandaglio impiegato

L'acquisizione dei dati batimetrici è avvenuta a mezzo ecoscandaglio multibeam Kongsberg EM 302, in possesso delle seguenti caratteristiche:

Frequency:	30 kHz
Swath:	Dual
Head:	Single
Transmit Array (degrees)	150 x 2
Receive Array (degrees)	2 x 30
Max number of beams/swath	432 (HD Equidistant)

Di seguito i settaggi impiegati in fase di acquisizione:

Vs:	Profile
Dual Swath mode:	Dynamic
Ping Mode:	Auto
Sound Speed to Transducer:	Sensor
Sector Coverage angles:	From 55° to 70°
Angular Coverage mode:	Auto
Beam Spacing:	HD Equidistant
Absorption Coefficient:	Salinity (from CTD profile)
Filtering:	Spike filter Strength: MEDIUM Range Gate: NORMAL Phase Ramp: NORMAL Penetration Filter Strength: OFF Slope: ON Aeration: OFF Sector Tracking: OFF Interference: ON
Pitch Stabilization	ON

2.4.2. Sistemi di posizionamento, heading e attitude.

Per l'acquisizione e l'elaborazione dei dati in oggetto è stato utilizzato il sistema HAP (Heading, Attitude and Positioning) Kongsberg Seatex Seapath 330.

Riguardo al posizionamento, il sistema operava in modalità DGPS mediante correzioni in abbonamento Fugro STARFIX L1, ricevute da due demodulatori Fugro Seastar 3610. Tuttavia, in alcune aree tali correzioni non venivano ricevute, degradando il posizionamento ad assoluto e, quando in assenza di copertura satellitare, addirittura a *Dead Reckoning*. Tale situazione, normalmente di durata ridotta nel tempo, non ha comunque inficiato l'accuratezza richiesta per la realizzazione del rilievo.

Per fornire i valori di attitude (*Roll, Pitch* e *Heave*), il sistema era collegato al datore di assetto Seatex MRU 5E, organico all'Unità.

Tale configurazione ha consentito di raggiungere un'accuratezza del dato di fondale pienamente rispondente a quanto richiesto per i rilievi di Ordine 2 su queste profondità (IHO SP44 - 5th Edition February 2008, Table 1: "Minimum Standards for Hydrographic Surveys"). In relazione al sistema di posizionamento utilizzato, il DATUM orizzontale dei dati idrografici acquisiti è WGS84, sistema ITRS nella rappresentazione ITRF2014.

Si riportano in annesso B le specifiche tecniche.

2.4.3. Bativelocimetro

Per l'acquisizione dei dati di velocità di propagazione del suono nella colonna d'acqua sono state utilizzate le seguenti sonde:

- Seabird SBE 911

I dati di pressione, temperatura e salinità acquisiti sono stati convertiti per il calcolo della VS utilizzando l'algoritmo di Chen-Millero.

Si riportano:

- in annesso D le specifiche tecniche;
- in annesso G il certificato di calibrazione della sonda.

3. Software di acquisizione e valorizzazione

Per l'acquisizione dei dati idrografici è stato utilizzato il software proprietario SIS (Seafloor Information System) versione 4.3.2, installato su una stazione HWS (Hydrographic Work Station) MP8300 in possesso delle seguenti caratteristiche:

- Processore: Intel® CoreTM i7-3770 CPU @ 3.40 GHz

- RAM: 8 GB

Sistema Operativo: Windows 7 Professional SP1

- System Type: 64-bit Operating System

Per la valorizzazione dei dati è stato utilizzato il software CARIS "Hips & Sips" versione 11.3.2, installato su una workstation commerciale in possesso delle seguenti caratteristiche:

Processore: Intel® Xenon® CPU E3-1535M v5 @ 2.9 GHz

- RAM: 32 GB

- Sistema Operativo: Windows 7 Professional SP1

- System Type: 64-bit Operating System

Le linee acquisite sono state convertite ed importate all'interno del progetto "MolloyHole". Successivamente si è provveduto a creare una superficie BASE (Bathymetry Associated with Statistical Error) di tipo CUBE (Combined Uncertainty and Bathymetry Estimator) con le impostazioni seguenti:

- Risoluzione: 20 metri

- Ordine IHO S-44: 2 (a=1; b=0.023);
- Metodo: "density & locale" in configurazione "default".

Il controllo della surface realizzata ha permesso di procedere, utilizzando gli Editor di CARIS H&S, nelle operazioni ritenute necessarie di pulizia dei dati anomali.

4. Metodologia di scandagliamento

4.1. Copertura del rilievo

Al termine delle operazioni, nell'area d'interesse è stata scandagliata un'area di **3793.1** km².

4.2. Problematiche incontrate

Durante l'acquisizione dei dati non sono state riscontrate problematiche di natura tecnica.

5. Quality control

5.1. Fase di acquisizione

In fase di acquisizione sono stati messi in atto tutti gli accorgimenti necessari al raggiungimento del miglior risultato possibile; in particolare, le misurazioni di VS sono state effettuate periodicamente in considerazione della situazione climatica e delle condizioni meteo marine.

5.1.1. Problematiche occorse durante la fase di acquisizione

Non sono state riscontrate problematiche particolari durante l'acquisizione.

5.2. Fase di elaborazione dati

5.2.1. Uncertainty Modeling

Il computo statistico effettuato sulla superficie CARIS ricavata ha riportato un valore medio dell'attributo di "Uncertainty" pari a 3 metri.

Dataset: file: CIO1+Molloy_20m.csar

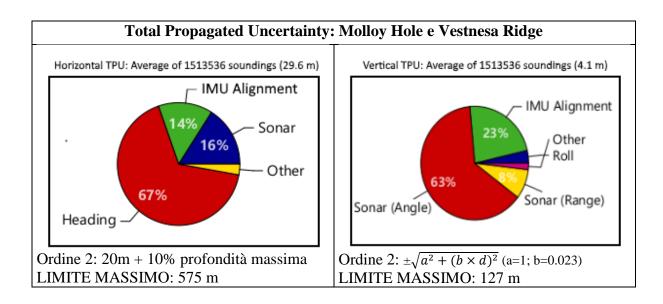
Attribute layer: Uncertainty
Attribute value bin size: 1.0 m

Statistical information: Minimum: 0.5 m Maximum: 10.8 m Mean: 4.6 m Std_dev: 2.1 m Total count: 7241874

5.2.2. Vessel file

Gli offset lineari ed angolari sono stati inseriti in fase di acquisizione nel software SIS. I relativi errori stimati sono stati inseriti nel Vessel file in fase di valorizzazione per permettere al software CARIS il calcolo della TPU. Il file è allegato alla relazione nell' annesso B (.hvf).

5.2.3. Static draft


Il draft è stato misurato con nave in bacino dalla ditta produttrice del MBES in fase di installazione.

5.2.4. TPU

La stima della Total Propagated Uncertainty (TPU) su ogni singolo fondale, tenendo in considerazione l'errore stimato di ogni parametro misurato (VS, immersione, misurazione della distanza e degli angoli, di movimento, offsets, squat, etc.), viene espressa come un valore dimensionale separato nelle sue componenti orizzontale (THU) e verticale (TVU) delle quali la pubblicazione S-44 "IHO Standards for Hydrographic Surveys" (6ª Edizione - 2020) indica i limiti per i vari ordini di rilievo:

Order	Special	la	1b	2
Description of areas.	Areas where under-keel	Areas shallower than 100	Areas shallower than 100	Areas generally deeper than
	clearance is critical	metres where under-keel	metres where under-keel	100 metres where a general
		clearance is less critical but	clearance is not considered to	description of the sea floor is
		features of concern to surface	be an issue for the type of	considered adequate.
		shipping may exist.	surface shipping expected to	
			transit the area.	
Maximum allowable THU	2 metres	5 metres + 5% of depth	5 metres + 5% of depth	20 metres + 10% of depth
95% Confidence level				
Maximum allowable TVU	a = 0.25 metre	a = 0.5 metre	a = 0.5 metre	a = 1.0 metre
95% Confidence level	b = 0.0075	b = 0.013	b = 0.013	b = 0.023

Estratto dalla Table 1 della S-44

5.2.5. QC REPORT

Si riporta di seguito il QC REPORT estrapolato dal software di valorizzazione, che evidenzia una percentuale del 100 % dei valori ricavati rispondente alle caratteristiche richieste per i rilievi di Ordine 2:

BASE Surface QC Report

Date and Time: 03/08/2020 11:58:00

Surface: Vestnesa.csar

Error values from: Standard Deviation

S-44 Order 2:

Range: 100.000 to 5000.000

Number of nodes considered: 7241874 Number of nodes within: 7241773 (100.00%)

Residual mean: -52.885

6. Controllo cartografia in vigore – definizione delle aree ZOC

6.1. Controllo e varianti alla cartografia in vigore N.N.

6.2. Relitti e pericoli per la navigazione

N.N.

6.3. Segnalamenti luminosi e boe

N.N

6.4. Linea di costa, basi misurate, allineamenti e particolari cospicui

N.N

6.5. Zone di Confidenza (ZOC) e qualità dei dati

AREA	CATZO C	DRVAL 1	DRVAL 2	POSAC C	SOUAC C	SUREN D	SURST A	TECS OU	VERDA T
Molloy Hole and Vestnesa Ridge	В	1237	5557	29,6	4,1	20210702	20210707	MBES	-

7. Correzione dei fondali

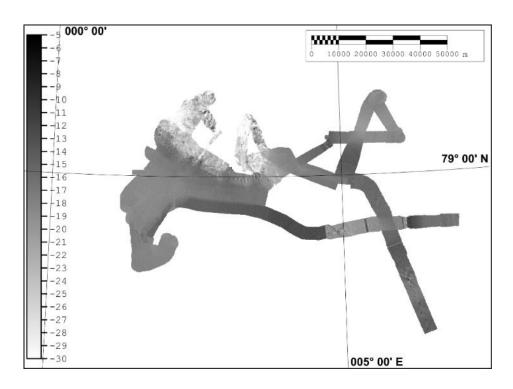
7.1. Patch Tests

La calibrazione dell'ecoscandaglio EM 302 è avvenuta in data 04 Luglio 2021. I parametri calcolati durante l'operazione sono stati ripetutamente controllati in fase di acquisizione riscontrandone la bontà.

Le variazioni angolari risultanti dalla calibrazione sono state inserite direttamente all'interno del software di acquisizione SIS ("Installation Parameters - MRU Angular Offset").

7.2. Marea e riporto dei fondali al datum verticale

In considerazione dell'elevata profondità media all'interno delle aree di scandagliamento, dell'elevata percentuale di copertura tra linee attigue (50%), della notevole distanza da porti di riferimento e della lieve entità dell'escursione di marea (inferiore ad un metro, quindi anche all'accuratezza richiesta dall'ordine del rilievo), non si è proceduto alla correzione del dato batimetrico secondo il valore di escursione di marea.


8. Caratteri del fondale

Con riferimento alla sicurezza della navigazione ed in accordo con lo standard S-57 ² nell'area del rilievo non è stato trovato alcun oggetto.

9. Natura del fondale marino

Contemporaneamente all'acquisizione dei dati di morfo-batimetria, sono stati acquisiti dati di backscatter acustico relativi al fondale per garantirne anche la caratterizzazione sedimentologica.

² vedasi S-57 appendix A chapter 2.

Superficie di backscatter nella zona del Molloy Hole e del Vestnesa Ridge.

9.1. Metodologia di analisi del backscattering acustico

L'analisi dei dati backscatter è stata effettuata con l'ausilio del programma CARIS "Hips & Sips" versione 10.3.2 Il workflow per l'analisi dei dati di backscatter ha prodotto le informazioni evidenziate nelle immagini sopra riportate.

10. Campionamento del fondale marino

In questa zona sono stati effettuati 2 campionamenti di fondo a mezzo Box Corer, nelle seguenti posizioni:

BOXCORER	DATA	ORA	DEPTH (m)	LAT. N	LONG. E	LOCATION	RECOVERY (cm)
HN21_063_BCO_001	20/06/2021	09:25	285	77°39,832' N	010°48,406'E	Isfjorden/CIO II	2
HN21_075_BCO_002	22/06/2021	13:50	770	78°58,267'N	008°20,136'E	KGF	14

Nella tabella successiva sono segnati i valori NATSUR e NATQUA richiesti dall'S-57.

BOXCORER	DATA	NATSUR	NATQUA
HN21_063_BCO_001	20/06/2021	4	1
HN21_075_BCO_002	22/06/2021	4;1	1;5

11. Altre osservazioni / misurazione

11.1. Osservazioni ghiacci

Uno degli aspetti salienti che caratterizzano le navigazioni polari quando si opera lungo il ciglio dei ghiacci è il continuo monitoraggio della dinamica della banchisa e del *drift* dei ghiacci. Sono state impiegate immagini satellitari e prodotti derivati da queste per il continuo monitoraggio e valutazione della concentrazione del ghiaccio nei pressi della banchisa.

• In annesso R i prodotti satellitari impiegati e la tabella riepilogativa degli stessi.

11.2. Osservazioni superficiali di marine litter

Durante le operazioni di acquisizione dati multibeam, in accordo con il protocollo sviluppato durante la UN Ocean Decade sono state effettuate 2 attività di osservazione del Marine Litter. Le osservazioni sono state condotte dal personale seguendo le linee guida sviluppato in ambito dell'azione 35 delle Nazioni Unite ed in linea con il protocollo GESAMP (Group of Expert on the Scientific Aspect of Marine Environmental Protection). Durante l'attività, svolta prevalentemente dalle alette di plancia e condizionata dalle condimeteo, il personale ha raccolto informazioni riguardanti le plastiche e altri corpi flottanti degni di nota.

• In annesso R la relativa relazione.

11.3. Manta

Durante le operazioni di acquisizione dati multibeam sono state effettuate 1 calata con la manta e 1 calata con il retino per la cattura di microplastiche. Ogni campione è stato filtrato con un setaccio con maglia di $100~\mu m$, raccolto in appositi contenitori in vetro e stabilizzato con etanolo 80% per le successive analisi al rientro presso i laboratori.

• In annesso R la relativa relazione.

11.4. Niskin / Van Dorne

Durante le operazioni nelle aree di interesse sono stati effettuati campionamenti d'acqua sia tramite bottiglie Niskin e Van Dorne superficiali, che utilizzando la rosetta di bottiglie Niskin associata alla sonda multiparametrica SBE 911.

Le analisi, di carattere chimico-biologico, serviranno per caratterizzare la colonna d'acqua e valutare la concentrazione di clorofilla sia per il legame con le analisi radiometriche che per

le analisi biologiche sul phytoplankton; inoltre verranno condotte analisi di radionuclidi per lo studio dell'età delle masse d'acqua e loro distribuzione spaziale.

In questa zona di scandagliamento sono stati acquisiti 18 sub-campioni per la clorofilla, 2 sub-campioni per il phytoplankton e 21 sub-campioni per i radionuclidi. Ogni sub campione è stato conservato in apposito contenitore a $^{\circ}4C$.

• In annesso R la relativa relazione.

11.5. Acquisizioni CTD e velocità del suono

Durante le attività di scandagliamento è stata spesso osservata una repentina, e a volte consistente, variazione della velocità della propagazione del suono in acqua. Al fine di valutare la natura del fenomeno, simile a quello presente alla foce dei fiumi, è stata condotta un'analisi delle temperature superficiali sfruttando i dati delle calate CTD e della sonda a scafo delle prese acqua mare. Nell'area di interesse sono state effettuate 6 calate con la sonda SBE 911 e 3 calate da gommone sul limite dei ghiacci con la sonda Valeport Rapid Cast CTD. I dati sono stati acquisiti con il software "Seasave 7" e processati con il software "SBE data processing", mostrando la presenza di differenti masse d'acqua nelle zone interessate che, lungo i fronti, causano una forte eterogeneità degli strati superficiali della colonna d'acqua. Per l'analisi in dettaglio si rimanda alla relativa relazione in annesso.

• In annesso R la relativa relazione.

12.Blocco firme e certificazione di qualità a standard IHO/S-44

	RELAZIONE DEL RILIEVO ()									
Sezione	Nome e Firma Compilatore	DATA	Nome e Firma Revisore ¹	DATA						
1 2 3 4 5 6 7 8	C°1ª CL Marro Mauro	02/07/21 – 07/07/21	C.F. r.n. (s.p.w.) IDO Maurizio Demarte	07/07/2021						

	RELAZIONE TECNICA DEL RILIEVO (ANNESSI)									
Annesso	Nome e Firma Compilatore	DATA	Nome e Firma Revisore ¹	DATA						
A										
В										
C				07/07/2021						
D	C012 CV 14 14			07/07/2021						
E	C°1ª CL Marro Mauro	02/07/21 -	C.F. r.n. (s.p.w.) IDO	W/ A						
F	/// ///	07/07/21	Maurizio Demarte	11/200						
G	Moore Mours	07/07/21								
Н				/						
I										
L										

Certificazione Finale di Qualità del Rilievo a Standard IHO/S-44:

CERTIFICAZIONE del RILIEVO							
Responsabile	Timbro e Firma	Data					
Io sottoscritto C.F. r.n. (s.p.e.) IDO Maurizio							
DEMARTE in possesso del "Certificate of Field							
Proficiency of Hydrographic Surveyor specialized in	C.F. r.n. (s.p.e.) IDO	22/02/2022					
Nautical Charting Hydrography" N. 31 rilasciato in	Maurizio Demarte						
data 17/09/2003 dall'Istituto Idrografico della Marina,							
certifico che il rilievo effettuato da Nave ALLIANCE							
nei periodi dal 02/07/2017 - 07/07/2017 in località							
Molloy Hole – Vestnesa Ridge è stato eseguito seguendo							
i minimi standard previsti dalla pubblicazione IHO/S-							
44 (VI Edizione) edita dall'International Hydrographic							
Organization. Ordine 2. IHO S-57 CATZOC A1.							

Documentazione tecnica (materiale digitale annesso)

Annesso A

documenti nautici

Annesso B

- Specifiche tecniche (Brochure ecoscandagli e sistemi inerziali)
- Configurazioni (Layout, configurazioni ed impostazioni sistemi idrografici)
 - Setup (File di configurazione sistemi idrografici)
- Caris (Raw data, progetti e prodotti di elaborazione)
 - H&S_Project (Progetto di processazione Caris Hips&SIPS)

Annesso C

• Specifiche tecniche (Brochure strumenti e servizi per il posizionamento)

Annesso D

• Specifiche tecniche (Brochure sonde VS)

Annesso G

Certificati di calibrazione

Annesso L

- Schede dei campioni;
- File con le posizioni dei campionamenti .hob;

Annesso R

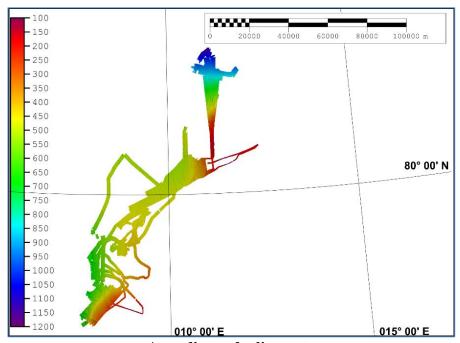
• Dettagli di Osservazioni Geofisiche od Oceanografiche

ISTITUTO IDROGRAFICO DELLA MARINA

	Relazione Tecnica – Idro-oceanografia DAPR (Data Acquisition and Processing Report)
Tipo di Rilievo:	Area d'altura
Numero di Rilievo	HN21_
Ordine del rilievo	2
Stato	Svalbard (NORVEGIA)
Località	Nord-Ovest delle isole Svalbard
Periodo	17/06/21 — 02/07/21
Vettori utilizzati per il rilievo	NRV ALLIANCE
Metodo di acquisizione:	Multibeam
Effettuato da:	Scientist in Charge: Prof. Roberta Ivaldi Capo Spedizione: CF (IDO) Maurizio DEMARTE
Numero di Archivio	//
Data	/1

¹ Data dell'ultima revisione del documento

Sommario


1.	Intro	duzione	4
1	1.	Compito assegnato	4
1	2.	Scopo del rilievo	4
1	3.	Criteri informativi della pianificazione	4
1	4.	Suddivisione dell'area in sottozone	4
2.	Strun	nentazione	5
2	2.1.	Vettore	5
2	2.3.	Offset	5
2	2.4.	Sistema Multibeam	5
	2.4.1	Ecoscandaglio impiegato	5
	2.4.2	Sistemi di posizionamento, heading e attitude	6
	2.4.3	Bativelocimetro	6
3.	Softw	vare di acquisizione e valorizzazione	7
4.	Meto	dologia di scandagliamento	7
4	.1.	Copertura del rilievo	7
4	l.2.	Problematiche incontrate	7
5.	Quali	ty control	7
5	5.1.	Fase di acquisizione	7
	5.1.1	Problematiche occorse durante la fase di acquisizione	8
5	5.2.	Fase di elaborazione dati	8
	5.2.1	Uncertainty Modeling	8
	5.2.2	Vessel file	8
	5.2.3	Static draft	8
	5.2.4	. TPU	8
	5.2.5	QC REPORT	9
6.	Contr	rollo cartografia in vigore – definizione delle aree ZOC	9
6	5.1.	Controllo e varianti alla cartografia in vigore	9
6	5.2.	Relitti e pericoli per la navigazione	9
6	5.3.	Segnalamenti luminosi e boe	9
6	5.4.	Linea di costa, basi misurate, allineamenti e particolari cospicui	9
6	5.5.	Zone di Confidenza (ZOC) e qualità dei dati	10
7.	Corre	zione dei fondali	10
7	'.1.	Patch Tests	10
7	'.2.	Marea e riporto dei fondali al datum verticale	10
8.	Carat	teri del fondale	10
9.	Natu	ra del fondale marino	10
9).1.	Metodologia di analisi del backscattering acustico	11

9.2.	Analisi morfologica del fondale	11
10.	Campionamento del fondale marino	11
11.	Altre osservazioni / misurazione	12
11.1.	Osservazioni Ghiacci	12
11.2.	Osservazioni Superficiali di Marine Litter	12
11.3.	Niskin / Van Dorne	12
11.4.	Manta	12
11.5.	Acquisizioni CTD e velocità del suono	12
12.	Blocco firme e certificazione di qualità a standard IHO/S-44	14

1. Introduzione

1.1. Compito assegnato

Eseguire un rilievo idrografico nell'area di operazione ad Ovest delle Isole Svalbard, in particolare vicino al Smeerenburgfjorden. Fornire mediante i dati acquisiti un contributo essenziale nelle zone indicate incrementando le conoscenze idrografiche dell'area.

Area di scandagliamento

1.2. Scopo del rilievo

Acquisire i dati di fondale necessari all'aggiornamento della documentazione nautica all'interno dell'area assegnata.

Fornire mediante l'analisi del backscatter relativo al fondale il riconoscimento delle caratteristiche morfologiche peculiari nella zona di operazioni.

1.3. Criteri informativi della pianificazione

La pianificazione delle linee è avvenuta sul grid batimetrico della cartografia GEBCO/IBCAO con una risoluzione di 200m, sufficientemente ampio in modo da concentrare l'attenzione sulle strutture morfologiche di maggiore interesse. La pianificazione del rilievo è stata elaborata tenendo conto dell'ordine richiesto (Order 2 – S44 Edition 6th), della profondità media del fondale e prendendo in considerazione la survey effettuata durante le campagne High North nelle zona limitrofe.

1.4. Suddivisione dell'area in sottozone

N.N.

2. Strumentazione

2.1. Vettore

Per l'esecuzione dei rilievi è stata utilizzata NRV Alliance. Di seguito le caratteristiche principali del vettore:

Lunghezza: 93.0 m,Larghezza: 15.2 m;

- Immersione: 5.0 m, 7.0 m (max);

- Propulsione: 2MPG, 3SSG, Gas Turbine.

2.2. Equipaggiamento

La seguente tabella riassume la strumentazione in dotazione al vettore impiegata per l'esecuzione del rilievo in oggetto:

Strumento	Ditta e Modello		
MBES	Kongsberg EM 302		
Heading, Attitude and Positioning system	Kongsberg Seapath 330		
<u> </u>	C · MDIJEE		
Motion Reference Unit	Seatex MRU5E		
Differential Corrections	Fugro 3610 STARFIX L1		
Demodulator			
Sonda Multiparametrica	Seabird 911		
Sonda Multiparametrica	Valeport Rapid Cast CTD		
SVS	Valeport miniSVS		

2.3. Offset

Gli offset sono stati misurati in fase di installazione dalla ditta produttrice ed in seguito controllati a cura del personale tecnico di bordo. Le verifiche effettuate durante le calibrazioni periodiche hanno confermato la bontà degli stessi.

In annesso B, all'interno del relativo progetto di valorizzazione, il file .hvf (Hips Vessel File) utilizzato.

2.4. Sistema Multibeam

2.4.1. Ecoscandaglio impiegato

L'acquisizione dei dati batimetrici è avvenuta a mezzo ecoscandaglio multibeam Kongsberg EM 302, in possesso delle seguenti caratteristiche:

Frequency:	30 kHz
Swath:	Dual
Head:	Single
Transmit Array (degrees)	150 x 2
Receive Array (degrees)	2 x 30
Max number of beams/swath	432 (HD Equidistant)

Di seguito i settaggi impiegati in fase di acquisizione:

Vs:	Profile
Dual Swath mode:	Dynamic
Ping Mode:	Auto
Sound Speed to Transducer:	Sensor
Sector Coverage angles:	From 55° to 70°
Angular Coverage mode:	Auto
Beam Spacing:	HD Equidistant
Absorption Coefficient:	Salinity (from CTD profile)
Filtering:	Spike filter Strength: MEDIUM Range Gate: NORMAL Phase Ramp: NORMAL Penetration Filter Strength: OFF Slope: ON Aeration: OFF Sector Tracking: OFF Interference: ON
Pitch Stabilization	ON

2.4.2. Sistemi di posizionamento, heading e attitude.

Per l'acquisizione e l'elaborazione dei dati in oggetto è stato utilizzato il sistema HAP (Heading, Attitude and Positioning) Kongsberg Seatex Seapath 330.

Riguardo al posizionamento, il sistema operava in modalità DGPS mediante correzioni in abbonamento Fugro STARFIX L1, ricevute da due demodulatori Fugro Seastar 3610. Tuttavia, in alcune aree tali correzioni non venivano ricevute, degradando il posizionamento ad assoluto e, quando in assenza di copertura satellitare, addirittura a *Dead Reckoning*. Tale situazione, normalmente di durata ridotta nel tempo, non ha comunque inficiato l'accuratezza richiesta per la realizzazione del rilievo.

Per fornire i valori di attitude (*Roll, Pitch* e *Heave*), il sistema era collegato al datore di assetto Seatex MRU 5E, organico all'Unità.

Tale configurazione ha consentito di raggiungere un'accuratezza del dato di fondale pienamente rispondente a quanto richiesto per i rilievi di Ordine 2 su queste profondità (IHO SP44 - 5th Edition February 2008, Table 1: "Minimum Standards for Hydrographic Surveys"). In relazione al sistema di posizionamento utilizzato, il DATUM orizzontale dei dati idrografici acquisiti è WGS84, sistema ITRS nella rappresentazione ITRF2014.

Si riportano in annesso B le specifiche tecniche.

2.4.3. Bativelocimetro

Per l'acquisizione dei dati di velocità di propagazione del suono nella colonna d'acqua sono state utilizzate le seguenti sonde:

Seabird SBE 911

I dati di pressione, temperatura e salinità acquisiti sono stati convertiti per il calcolo della VS utilizzando l'algoritmo di Chen-Millero.

Si riportano:

- in annesso D le specifiche tecniche;
- in annesso G il certificato di calibrazione della sonda.

3. Software di acquisizione e valorizzazione

Per l'acquisizione dei dati idrografici è stato utilizzato il software proprietario SIS (Seafloor Information System) versione 4.3.2, installato su una stazione HWS (Hydrographic Work Station) MP8300 in possesso delle seguenti caratteristiche:

- Processore: Intel® CoreTM i7-3770 CPU @ 3.40 GHz
- RAM: 8 GB
- Sistema Operativo: Windows 7 Professional SP1
- System Type: 64-bit Operating System

Per la valorizzazione dei dati è stato utilizzato il software CARIS "Hips & Sips" versione 11.3.2, installato su una workstation commerciale in possesso delle seguenti caratteristiche:

- Processore: Intel® Xenon® CPU E3-1535M v5 @ 2.9 GHz
- RAM: 32 GB
- Sistema Operativo: Windows 7 Professional SP1
- System Type: 64-bit Operating System

Le linee acquisite sono state convertite ed importate all'interno del progetto "NW_Svalbard". Successivamente si è provveduto a creare una superficie BASE (Bathymetry Associated with Statistical Error) di tipo CUBE (Combined Uncertainty and Bathymetry Estimator) con le impostazioni seguenti:

- Risoluzione: 20 metri
- Ordine IHO S-44: 2 (a=1; b=0.023);
- Metodo: "density & locale" in configurazione "default".

Il controllo della surface realizzata ha permesso di procedere, utilizzando gli Editor di CARIS H&S, nelle operazioni ritenute necessarie di pulizia dei dati anomali.

4. Metodologia di scandagliamento

4.1. Copertura del rilievo

Al termine delle operazioni, nell'area d'interesse è stata scandagliata un'area di **2009.4** km².

4.2. Problematiche incontrate

Durante l'acquisizione dei dati non sono state riscontrate problematiche di natura tecnica.

5. Quality control

5.1. Fase di acquisizione

In fase di acquisizione sono stati messi in atto tutti gli accorgimenti necessari al raggiungimento del miglior risultato possibile; in particolare, le misurazioni di VS sono state effettuate periodicamente in considerazione della situazione climatica e delle condizioni meteo marine.

5.1.1. Problematiche occorse durante la fase di acquisizione

Non sono state riscontrate problematiche particolari durante l'acquisizione.

5.2. Fase di elaborazione dati

5.2.1. Uncertainty Modeling

Il computo statistico effettuato sulla superficie CARIS ricavata ha riportato un valore medio dell'attributo di "Uncertainty" pari a 3 metri.

Dataset: file: DP_CUBE_20M_UTM32N.csar

Attribute layer: Uncertainty Attribute value bin size: 1.0 m

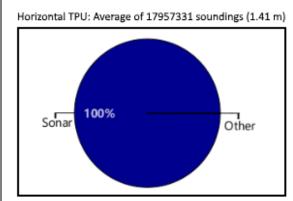
Statistical information: Minimum: 0.5 m Maximum: 4.5 m Mean: 1.3 m Std_dev: 0.7 m Total count: 4328076

5.2.2. Vessel file

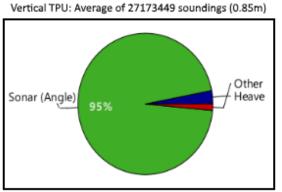
Gli offset lineari ed angolari sono stati inseriti in fase di acquisizione nel software SIS. I relativi errori stimati sono stati inseriti nel Vessel file in fase di valorizzazione per permettere al software CARIS il calcolo della TPU. Il file è allegato alla relazione nell' annesso B (.hvf).

5.2.3. Static draft

Il draft è stato misurato con nave in bacino dalla ditta produttrice del MBES in fase di installazione.


5.2.4. TPU

La stima della Total Propagated Uncertainty (TPU) su ogni singolo fondale, tenendo in considerazione l'errore stimato di ogni parametro misurato (VS, immersione, misurazione della distanza e degli angoli, di movimento, offsets, squat, etc.), viene espressa come un valore dimensionale separato nelle sue componenti orizzontale (THU) e verticale (TVU) delle quali la pubblicazione S-44 "IHO Standards for Hydrographic Surveys" (5ª Edizione - Febbraio 2008) indica i limiti per i vari ordini di rilievo:


Order	Special	la	1b	2
Description of areas.	Areas where under-keel clearance is critical	Areas shallower than 100 metres where under-keel clearance is less critical but features of concern to surface shipping may exist.	Areas shallower than 100 metres where under-keel clearance is not considered to be an issue for the type of surface shipping expected to transit the area.	Areas generally deeper than 100 metres where a general description of the sea floor is considered adequate.
Maximum allowable THU 95% Confidence level	2 metres	5 metres + 5% of depth	5 metres + 5% of depth	20 metres + 10% of depth
Maximum allowable TVU 95% Confidence level	a = 0.25 metre b = 0.0075	a = 0.5 metre b = 0.013	a = 0.5 metre b = 0.013	a = 1.0 metre b = 0.023

Estratto dalla Table 1 della S-44

Total Propagated Uncertainty: Nord Ovest delle Svalbard

Ordine 2: 20m + 10% profondità massima LIMITE MASSIMO: 31 m

Ordine 2: $\pm \sqrt{a^2 + (b \times d)^2}$ (a=1; b=0.023)

LIMITE MASSIMO: 2,8 m

5.2.5. QC REPORT

Si riporta di seguito il QC REPORT estrapolato dal software di valorizzazione, che evidenzia una percentuale del 100 % dei valori ricavati rispondente alle caratteristiche richieste per i rilievi di Ordine 2:

BASE Surface QC Report

Date and Time: 18/07/2021 18:12:59 Surface: W_Svalbard_20m.csar

Error values from: Greater of the two S-44 Order 2:

Range: 100.000 to 5000.000

Number of nodes considered: 4328076 Number of nodes within: 4328076 (100.00%)

Residual mean: -10.370

6. Controllo cartografia in vigore – definizione delle aree ZOC

- **6.1.** Controllo e varianti alla cartografia in vigore N.N.
- **6.2.** Relitti e pericoli per la navigazione N.N.
- **6.3.** Segnalamenti luminosi e boe
- **6.4.** Linea di costa, basi misurate, allineamenti e particolari cospicui N.N

6.5. Zone di Confidenza (ZOC) e qualità dei dati

AREA	CATZO C	DRVAL 1	DRVAL 2	POSAC C	SOUAC C	SUREN D	SURST A	TECS OU	VERDA T
Nord Ovest Svalbard	В	114	959	1,4	0,8	20210617	20210702	MBES	-

7. Correzione dei fondali

7.1. Patch Tests

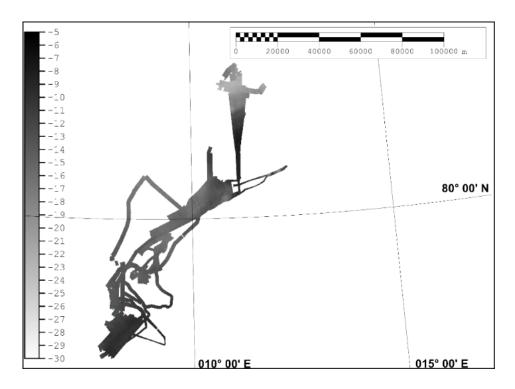
La calibrazione dell'ecoscandaglio EM 302 è avvenuta in data 04 Luglio 2021. I parametri calcolati durante l'operazione sono stati ripetutamente controllati in fase di acquisizione riscontrandone la bontà.

Le variazioni angolari risultanti dalla calibrazione sono state inserite direttamente all'interno del software di acquisizione SIS ("Installation Parameters - MRU Angular Offset").

7.2. Marea e riporto dei fondali al datum verticale

In considerazione dell'elevata profondità media all'interno delle aree di scandagliamento, dell'elevata percentuale di copertura tra linee attigue (50%), della notevole distanza da porti di riferimento e della lieve entità dell'escursione di marea (inferiore ad un metro, quindi anche all'accuratezza richiesta dall'ordine del rilievo), non si è proceduto alla correzione del dato batimetrico secondo il valore di escursione di marea.

8. Caratteri del fondale


Con riferimento alla sicurezza della navigazione ed in accordo con lo standard S-57 2 nell'area del rilievo non è stato trovato alcun oggetto.

9. Natura del fondale marino

Contemporaneamente all'acquisizione dei dati di morfo-batimetria, sono stati acquisiti dati di backscatter acustico relativi al fondale per garantirne anche la caratterizzazione sedimentologica.

٠

² vedasi S-57 appendix A chapter 2.

Superficie di backscatter nella zona Nord Ovest delle isole Svalbard.

9.1. Metodologia di analisi del backscattering acustico

L'analisi dei dati backscatter è stata effettuata con l'ausilio del programma CARIS "Hips & Sips" versione 11.3.2 Il workflow per l'analisi dei dati di backscatter ha prodotto le informazioni evidenziate nelle immagini sopra riportate.

10. Campionamento del fondale marino

In questa zona sono stati effettuati 2 campionamenti di fondo a mezzo Box Corer, nelle seguenti posizioni:

BOXCORER	DATA	ORA	DEPTH (m)	LAT. N	LONG. E	LOCATION	RECOVERY (cm)
HN21_093_BCO_003	24/06/2021	13:29	450	79°43,955'N	008°47,457'E	NW SVALBARD	Not closed
HN21_093_BCO_003bis	24/06/2021	13:29	455	79°44,470'N	008°49,524'E	NW SVALBARD	23.5
HN21_161_BCO_004	02/07/2021	07:35	482	80°5,062'N	010°30,956'E	NW SVALBARD	14

La stazione BCO_003 è stata ripetuta perché durante la prima calata il box corer non si era correttamente chiuso.

Nella tabella successiva sono segnati i valori NATSUR e NATQUA richiesti dall'S-57.

BOXCORER	DATA	NATSUR	NATQUA
HN21_093_BCO_003bis	24/06/2021	4;1	1;5
HN21_161_BCO_004	02/07/2021	4;1	1;5

11. Altre osservazioni / misurazione

11.1. Osservazioni ghiacci

Uno degli aspetti salienti che caratterizzano le navigazioni polari quando si opera lungo il ciglio dei ghiacci è il continuo monitoraggio della dinamica della banchisa e del *drift* dei ghiacci. Sono state impiegate immagini satellitari e prodotti derivati da queste per il continuo monitoraggio e valutazione della concentrazione del ghiaccio nei pressi della banchisa.

• In annesso R i prodotti satellitari impiegati e la tabella riepilogativa degli stessi.

11.2. Osservazioni superficiali di marine litter

Durante le operazioni di acquisizione dati multibeam, in accordo con il protocollo sviluppato durante la UN Ocean Decade sono state effettuate 2 attività di osservazione del Marine Litter. Le osservazioni sono state condotte dal personale seguendo le linee guida sviluppato in ambito dell'azione 35 delle Nazioni Unite ed in linea con il protocollo GESAMP (Group of Expert on the Scientific Aspect of Marine Environmental Protection). Durante l'attività, svolta prevalentemente dalle alette di plancia e condizionata dalle condimeteo, il personale ha raccolto informazioni riguardanti le plastiche e altri corpi flottanti degni di nota.

• In annesso R la relativa relazione.

11.3. Manta e retino

Durante le operazioni di acquisizione sono state effettuate 5 calate con la manta e 1 calata con il retino per la cattura di microplastiche. Ogni campione è stato filtrato con un setaccio con maglia di $100~\mu m$, raccolto in appositi contenitori in vetro e stabilizzato con etanolo 80% per le successive analisi al rientro presso i laboratori.

• In annesso R la relativa relazione.

11.4. Niskin / Van Dorne

Durante le operazioni nelle aree di interesse sono stati effettuati campionamenti d'acqua sia tramite bottiglie Niskin e Van Dorne superficiali, che utilizzando la rosetta di bottiglie Niskin associata alla sonda multiparametrica SBE 911.

Le analisi, di carattere chimico-biologico, serviranno per caratterizzare la colonna d'acqua e valutare la concentrazione di clorofilla sia per il legame con le analisi radiometriche che per

le analisi biologiche sul phytoplankton; inoltre verranno condotte analisi di radionuclidi per lo studio dell'età delle masse d'acqua e loro distribuzione spaziale.

In questa zona di scandagliamento sono stati acquisiti 18 sub-campioni per la clorofilla, 6 sub-campioni per il phytoplankton e 21 sub-campioni per i radionuclidi. Ogni sub campione è stato conservato in apposito contenitore a °4C.

• In annesso R la relativa relazione.

11.5. Acquisizioni CTD e velocità del suono

Durante le attività di scandagliamento è stata spesso osservata una repentina, e a volte consistente, variazione della velocità della propagazione del suono in acqua. Al fine di valutare la natura del fenomeno, simile a quello presente alla foce dei fiumi, è stata condotta un'analisi delle temperature superficiali sfruttando i dati delle calate CTD e della sonda a scafo delle prese acqua mare. Nell'area di interesse sono state effettuate 20 calate con la sonda SBE 911 e 3 calate da gommone sul limite dei ghiacci con la sonda Valeport Rapid Cast CTD. I dati sono stati acquisiti con il software "Seasave 7" e processati con il software "SBE data processing", mostrando la presenza di differenti masse d'acqua nelle zone interessate che, lungo i fronti, causano una forte eterogeneità degli strati superficiali della colonna d'acqua. Per l'analisi in dettaglio si rimanda alla relativa relazione in annesso.

• In annesso R la relativa relazione.

12.Blocco firme e certificazione di qualità a standard IHO/S-44

	RELAZIONE DEL RILIEVO ()							
Sezione	Nome e Firma Compilatore	DATA	Nome e Firma Revisore ¹	DATA				
1								
2								
3	C°1ª CL Marro Mauro			02/07/2021				
4	111 111	17/06/21 –	C.F. r.n. (s.p.w.)	not A				
5	Moore Mouro	02/07/21	IDO Maurizio					
6		V=1.4.1.==	Demarte					
7								
8								
9								

	RELAZIONE TECNICA DEL RILIEVO (ANNESSI)								
Annesso	Nome e Firma Compilatore	DATA	Nome e Firma Revisore ¹	DATA					
A B C D E F G H I L	C°1ª CL Marro Mauro	17/06/21 – 02/07/21	C.F. r.n. (s.p.w.) IDO Maurizio Demarte	02/07/2021					

Certificazione Finale di Qualità del Rilievo a Standard IHO/S-44:

CERTIFICAZIONE del RILIEVO							
Responsabile	Timbro e Firma	Data					
Io sottoscritto C.F. r.n. (s.p.e.) IDO Maurizio							
DEMARTE in possesso del "Certificate of Field							
Proficiency of Hydrographic Surveyor specialized in	C.F. r.n. (s.p.e.) IDO	22/02/2022					
Nautical Charting Hydrography" N. 31 rilasciato in	Maurizio Demarte						
data 17/09/2003 dall'Istituto Idrografico della Marina,							
certifico che il rilievo effettuato da Nave ALLIANCE							
nei periodi dal 17/06/2017 - 02/07/2017 in localitàNord							
Ovest delle Svalbard è stato eseguito seguendo i minimi							
standard previsti dalla pubblicazione IHO/S-44 (VI							
Edizione) edita dall'International Hydrographic							
Organization. Ordine 2. IHO S-57 CATZOC A1.							

Documentazione tecnica (materiale digitale annesso)

Annesso A

documenti nautici

Annesso B

- Specifiche tecniche (Brochure ecoscandagli e sistemi inerziali)
- Configurazioni (Layout, configurazioni ed impostazioni sistemi idrografici)
 - Setup (File di configurazione sistemi idrografici)
- Caris (Raw data, progetti e prodotti di elaborazione)
 - H&S_Project (Progetto di processazione Caris Hips&SIPS)

Annesso C

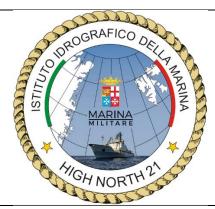
• Specifiche tecniche (Brochure strumenti e servizi per il posizionamento)

Annesso D

• Specifiche tecniche (Brochure sonde VS)

Annesso G

• Certificati di calibrazione


Annesso L

- Schede dei campioni;
- File con le posizioni dei campionamenti .hob;

Annesso R

• Dettagli di Osservazioni Geofisiche od Oceanografiche

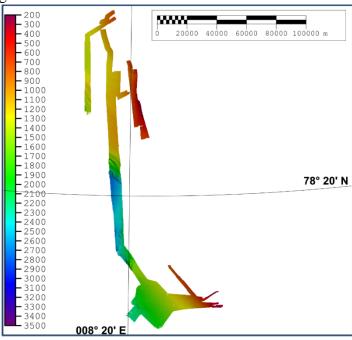
ISTITUTO IDROGRAFICO DELLA MARINA

	Relazione Tecnica – Idro-oceanografia DAPR (Data Acquisition and Processing Report)				
Tipo di Rilievo:	Area d'altura				
Numero di Rilievo	HN21_				
Ordine del rilievo	2				
Stato	Svalbard (NORVEGIA)				
Località	Ovest delle isole Svalbard				
Periodo	13/06/21 — 02/07/21				
Vettori utilizzati per il rilievo	NRV ALLIANCE				
Metodo di acquisizione:	Multibeam				
Effettuato da:	Scientist in Charge: Prof. Roberta Ivaldi Capo Spedizione: CF (IDO) Maurizio DEMARTE				
Numero di Archivio	//				
Data	/1				

¹ Data dell'ultima revisione del documento

Sommario

1. Int	troduzione	4
1.1.	Compito assegnato	4
1.2.	Scopo del rilievo	4
1.3.	Criteri informativi della pianificazione	4
1.4.	Suddivisione dell'area in sottozone	4
2. Str	rumentazione	5
2.1.	Vettore	5
2.3.	Offset	5
2.4.	Sistema Multibeam	5
2.4	4.1. Ecoscandaglio impiegato	5
2.4	4.2. Sistemi di posizionamento, heading e attitude	6
2.4	4.3. Bativelocimetro	6
3. So	oftware di acquisizione e valorizzazione	7
4. Me	etodologia di scandagliamento	7
4.1.	Copertura del rilievo	7
4.2.	Problematiche incontrate	7
5. Qı	uality control	7
5.1.	Fase di acquisizione	7
5.1	1.1. Problematiche occorse durante la fase di acquisizione	8
5.2.	Fase di elaborazione dati	8
5.2	2.1. Uncertainty Modeling	8
5.2	2.2. Vessel file	8
5.2	2.3. Static draft	8
5.2	2.4. TPU	8
5.2	2.5. QC REPORT	9
6. Co	ontrollo cartografia in vigore – definizione delle aree ZOC	9
6.1.	Controllo e varianti alla cartografia in vigore	9
6.2.	Relitti e pericoli per la navigazione	9
6.3.	Segnalamenti luminosi e boe	9
6.4.	Linea di costa, basi misurate, allineamenti e particolari cospicui	9
6.5.	Zone di Confidenza (ZOC) e qualità dei dati	10
7. Co	orrezione dei fondali	10
7.1.	Patch Tests	10
7.2.	Marea e riporto dei fondali al datum verticale	10
8. Ca	ratteri del fondale	10
9. Na	atura del fondale marino	10
9.1.	Metodologia di analisi del backscattering acustico	11


9.2.	Analisi morfologica del fondale	11
10.	Campionamento del fondale marino	11
11.	Altre osservazioni / misurazione	12
11.1.	Osservazioni Ghiacci	12
11.2.	Osservazioni Superficiali di Marine Litter	12
11.3.	Niskin / Van Dorne	12
11.4.	Manta	12
11.5.	Acquisizioni CTD e velocità del suono	12
12.	Blocco firme e certificazione di qualità a standard IHO/S-44	14

1. Introduzione

1.1. Compito assegnato

Eseguire un rilievo idrografico nell'area di operazione ad Ovest delle Isole Svalbard, in particolare vicino al Kongsfjorden e all'Isfjorden

Fornire mediante i dati acquisiti un contributo essenziale nelle zone indicate incrementando le conoscenze idrografiche dell'area.

Area di scandagliamento

1.2. Scopo del rilievo

Acquisire i dati di fondale necessari all'aggiornamento della documentazione nautica all'interno dell'area assegnata.

Fornire mediante l'analisi del backscatter relativo al fondale il riconoscimento delle caratteristiche morfologiche peculiari nella zona di operazioni.

1.3. Criteri informativi della pianificazione

La pianificazione delle linee è avvenuta sul grid batimetrico della cartografia GEBCO/IBCAO con una risoluzione di 200m, sufficientemente ampio in modo da concentrare l'attenzione sulle strutture morfologiche di maggiore interesse. La pianificazione del rilievo è stata elaborata tenendo conto dell'ordine richiesto (Order 2 – S44 Edition 6th), della profondità media del fondale e prendendo in considerazione la survey effettuata durante le campagne High North nelle zona limitrofe.

1.4. Suddivisione dell'area in sottozone

N.N.

2. Strumentazione

2.1. Vettore

Per l'esecuzione dei rilievi è stata utilizzata NRV Alliance. Di seguito le caratteristiche principali del vettore:

Lunghezza: 93.0 m,Larghezza: 15.2 m;

- Immersione: 5.0 m, 7.0 m (max);

- Propulsione: 2MPG, 3SSG, Gas Turbine.

2.2. Equipaggiamento

La seguente tabella riassume la strumentazione in dotazione al vettore impiegata per l'esecuzione del rilievo in oggetto:

Strumento	Ditta e Modello
MBES	Kongsberg EM 302
Heading, Attitude and Positioning system	Kongsberg Seapath 330
Motion Reference Unit	Seatex MRU5E
Differential Corrections Demodulator	Fugro 3610 STARFIX L1
Sonda Multiparametrica	Seabird 911
SVS	Valeport miniSVS

2.3. Offset

Gli offset sono stati misurati in fase di installazione dalla ditta produttrice ed in seguito controllati a cura del personale tecnico di bordo. Le verifiche effettuate durante le calibrazioni periodiche hanno confermato la bontà degli stessi.

In annesso B, all'interno del relativo progetto di valorizzazione, il file .hvf (Hips Vessel File) utilizzato.

2.4. Sistema Multibeam

2.4.1. Ecoscandaglio impiegato

L'acquisizione dei dati batimetrici è avvenuta a mezzo ecoscandaglio multibeam Kongsberg EM 302, in possesso delle seguenti caratteristiche:

Frequency:	30 kHz
Swath:	Dual
Head:	Single
Transmit Array (degrees)	150 x 2
Receive Array (degrees)	2 x 30
Max number of beams/swath	432 (HD Equidistant)

Di seguito i settaggi impiegati in fase di acquisizione:

Vs:	Profile
Dual Swath mode:	Dynamic
Ping Mode:	Auto
Sound Speed to Transducer:	Sensor
Sector Coverage angles:	From 55° to 70°
Angular Coverage mode:	Auto
Beam Spacing:	HD Equidistant
Absorption Coefficient:	Salinity (from CTD profile)
Filtering:	Spike filter Strength: MEDIUM Range Gate: NORMAL Phase Ramp: NORMAL Penetration Filter Strength: OFF Slope: ON Aeration: OFF Sector Tracking: OFF Interference: ON
Pitch Stabilization	ON

2.4.2. Sistemi di posizionamento, heading e attitude.

Per l'acquisizione e l'elaborazione dei dati in oggetto è stato utilizzato il sistema HAP (Heading, Attitude and Positioning) Kongsberg Seatex Seapath 330.

Riguardo al posizionamento, il sistema operava in modalità DGPS mediante correzioni in abbonamento Fugro STARFIX L1, ricevute da due demodulatori Fugro Seastar 3610. Tuttavia, in alcune aree tali correzioni non venivano ricevute, degradando il posizionamento ad assoluto e, quando in assenza di copertura satellitare, addirittura a *Dead Reckoning*. Tale situazione, normalmente di durata ridotta nel tempo, non ha comunque inficiato l'accuratezza richiesta per la realizzazione del rilievo.

Per fornire i valori di attitude (*Roll, Pitch* e *Heave*), il sistema era collegato al datore di assetto Seatex MRU 5E, organico all'Unità.

Tale configurazione ha consentito di raggiungere un'accuratezza del dato di fondale pienamente rispondente a quanto richiesto per i rilievi di Ordine 2 su queste profondità (IHO SP44 - 5th Edition February 2008, Table 1: "Minimum Standards for Hydrographic Surveys"). In relazione al sistema di posizionamento utilizzato, il DATUM orizzontale dei dati idrografici acquisiti è WGS84, sistema ITRS nella rappresentazione ITRF2014.

Si riportano in annesso B le specifiche tecniche.

2.4.3. Bativelocimetro

Per l'acquisizione dei dati di velocità di propagazione del suono nella colonna d'acqua sono state utilizzate le seguenti sonde:

Seabird SBE 911

I dati di pressione, temperatura e salinità acquisiti sono stati convertiti per il calcolo della VS utilizzando l'algoritmo di Chen-Millero.

Si riportano:

- in annesso D le specifiche tecniche;
- in annesso G il certificato di calibrazione della sonda.

3. Software di acquisizione e valorizzazione

Per l'acquisizione dei dati idrografici è stato utilizzato il software proprietario SIS (Seafloor Information System) versione 4.3.2, installato su una stazione HWS (Hydrographic Work Station) MP8300 in possesso delle seguenti caratteristiche:

- Processore: Intel® CoreTM i7-3770 CPU @ 3.40 GHz
- RAM: 8 GB
- Sistema Operativo: Windows 7 Professional SP1
- System Type: 64-bit Operating System

Per la valorizzazione dei dati è stato utilizzato il software CARIS "Hips & Sips" versione 11.3.2, installato su una workstation commerciale in possesso delle seguenti caratteristiche:

- Processore: Intel® Xenon® CPU E3-1535M v5 @ 2.9 GHz
- RAM: 32 GB
- Sistema Operativo: Windows 7 Professional SP1
- System Type: 64-bit Operating System

Le linee acquisite sono state convertite ed importate all'interno del progetto "W_Svalbard". Successivamente si è provveduto a creare una superficie BASE (Bathymetry Associated with Statistical Error) di tipo CUBE (Combined Uncertainty and Bathymetry Estimator) con le impostazioni seguenti:

- Risoluzione: 20 metri
- Ordine IHO S-44: 2 (a=1; b=0.023);
- Metodo: "density & locale" in configurazione "default".

Il controllo della surface realizzata ha permesso di procedere, utilizzando gli Editor di CARIS H&S, nelle operazioni ritenute necessarie di pulizia dei dati anomali.

4. Metodologia di scandagliamento

4.1. Copertura del rilievo

Al termine delle operazioni, nell'area d'interesse è stata scandagliata un'area di **2707.9** km².

4.2. Problematiche incontrate

Durante l'acquisizione dei dati non sono state riscontrate problematiche di natura tecnica.

5. Quality control

5.1. Fase di acquisizione

In fase di acquisizione sono stati messi in atto tutti gli accorgimenti necessari al raggiungimento del miglior risultato possibile; in particolare, le misurazioni di VS sono state effettuate periodicamente in considerazione della situazione climatica e delle condizioni meteo marine.

5.1.1. Problematiche occorse durante la fase di acquisizione

Non sono state riscontrate problematiche particolari durante l'acquisizione.

5.2. Fase di elaborazione dati

5.2.1. Uncertainty Modeling

Il computo statistico effettuato sulla superficie CARIS ricavata ha riportato un valore medio dell'attributo di "Uncertainty" pari a 3 metri.

Dataset: file: W_Svalbard_20m.csar Attribute layer: Uncertainty Attribute value bin size: 1.0 m

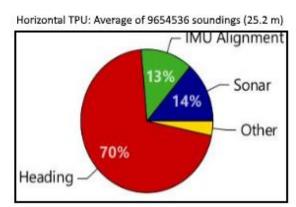
Statistical information: Minimum: 0.5 m Maximum: 11.5 m Mean: 4.2 m Std_dev: 1.9 m Total count: 6649950

5.2.2. Vessel file

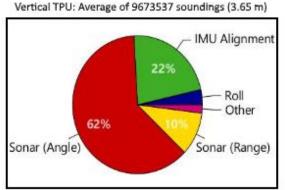
Gli offset lineari ed angolari sono stati inseriti in fase di acquisizione nel software SIS. I relativi errori stimati sono stati inseriti nel Vessel file in fase di valorizzazione per permettere al software CARIS il calcolo della TPU. Il file è allegato alla relazione nell' annesso B (.hvf).

5.2.3. Static draft

Il draft è stato misurato con nave in bacino dalla ditta produttrice del MBES in fase di installazione.


5.2.4. TPU

La stima della Total Propagated Uncertainty (TPU) su ogni singolo fondale, tenendo in considerazione l'errore stimato di ogni parametro misurato (VS, immersione, misurazione della distanza e degli angoli, di movimento, offsets, squat, etc.), viene espressa come un valore dimensionale separato nelle sue componenti orizzontale (THU) e verticale (TVU) delle quali la pubblicazione S-44 "IHO Standards for Hydrographic Surveys" (5ª Edizione - Febbraio 2008) indica i limiti per i vari ordini di rilievo:


Order	Special	la	1b	2
Description of areas.	Areas where under-keel clearance is critical	Areas shallower than 100 metres where under-keel clearance is less critical but features of concern to surface shipping may exist.	Areas shallower than 100 metres where under-keel clearance is not considered to be an issue for the type of surface shipping expected to transit the area.	Areas generally deeper than 100 metres where a general description of the sea floor is considered adequate.
Maximum allowable THU 95% Confidence level	2 metres	5 metres + 5% of depth	5 metres + 5% of depth	20 metres + 10% of depth
Maximum allowable TVU 95% Confidence level	a = 0.25 metre b = 0.0075	a = 0.5 metre b = 0.013	a = 0.5 metre b = 0.013	a = 1.0 metre b = 0.023

Estratto dalla Table 1 della S-44

Total Propagated Uncertainty:	Ovest delle Svalbard
--------------------------------------	----------------------

Ordine 2: 20m + 10% profondità massima LIMITE MASSIMO: 43 m

Ordine 2: $\pm \sqrt{a^2 + (b \times d)^2}$ (a=1; b=0.023) LIMITE MASSIMO: 5 m

5.2.5. QC REPORT

Si riporta di seguito il QC REPORT estrapolato dal software di valorizzazione, che evidenzia una percentuale del 100 % dei valori ricavati rispondente alle caratteristiche richieste per i rilievi di Ordine 2:

BASE Surface QC Report

Date and Time: 18/07/2021 18:12:59 Surface: W_Svalbard_20m.csar Error values from: Greater of the two

S-44 Order 2:

Range: 100.000 to 5000.000

Number of nodes considered: 6649950 Number of nodes within: 6649876 (100.00%)

Residual mean: -29.873

6. Controllo cartografia in vigore – definizione delle aree ZOC

- **6.2.** Relitti e pericoli per la navigazione N.N.
- **6.3.** Segnalamenti luminosi e boe N.N
- 6.4. Linea di costa, basi misurate, allineamenti e particolari cospicui $N.N\,$

6.5. Zone di Confidenza (ZOC) e qualità dei dati

AREA	CATZO C	DRVAL 1	DRVAL 2	POSAC C	SOUAC C	SURSTA	SUREN D	TECS OU	VERDA T
Ovest Svalbard	В	232	2771	25	3.5	20210613	20210702	MBES	-

7. Correzione dei fondali

7.1. Patch Tests

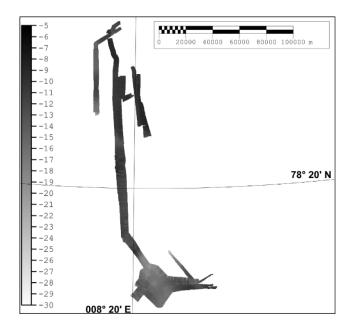
La calibrazione dell'ecoscandaglio EM 302 è avvenuta in data 04 Luglio 2021. I parametri calcolati durante l'operazione sono stati ripetutamente controllati in fase di acquisizione riscontrandone la bontà.

Le variazioni angolari risultanti dalla calibrazione sono state inserite direttamente all'interno del software di acquisizione SIS ("Installation Parameters - MRU Angular Offset").

7.2. Marea e riporto dei fondali al datum verticale

In considerazione dell'elevata profondità media all'interno delle aree di scandagliamento, dell'elevata percentuale di copertura tra linee attigue (50%), della notevole distanza da porti di riferimento e della lieve entità dell'escursione di marea (inferiore ad un metro, quindi anche all'accuratezza richiesta dall'ordine del rilievo), non si è proceduto alla correzione del dato batimetrico secondo il valore di escursione di marea.

8. Caratteri del fondale


Con riferimento alla sicurezza della navigazione ed in accordo con lo standard S-57 2 nell'area del rilievo non è stato trovato alcun oggetto.

9. Natura del fondale marino

Contemporaneamente all'acquisizione dei dati di morfo-batimetria, sono stati acquisiti dati di backscatter acustico relativi al fondale per garantirne anche la caratterizzazione sedimentologica.

-

² vedasi S-57 appendix A chapter 2.

Superficie di backscatter nella zona Ovest delle isole Svalbard.

9.1. Metodologia di analisi del backscattering acustico

L'analisi dei dati backscatter è stata effettuata con l'ausilio del programma CARIS "Hips & Sips" versione 11.3.2 Il workflow per l'analisi dei dati di backscatter ha prodotto le informazioni evidenziate nelle immagini sopra riportate.

10. Campionamento del fondale marino

In questa zona sono stati effettuati 3 campionamenti di fondo a mezzo Box Corer, nelle seguenti posizioni:

BOXCORER	DATA	ORA	DEPTH (m)	LAT. N	LONG. E	LOCATION	RECOVERY (cm)
HN21_183_BCO_005	03/07/2021	16:49	2516	78°53,746'N	001°34,692'E	MOLLOY/CIO I	25
HN21_225_90BCO_006	06/07/2021	11:36	1756	78°06,831'N	004°46,216'E	MOLLOY/VESTNESA	22.4
HN21_226_BCO_007	06/07/2021	16:22	1254	79°07,275'N	005°59,165'E	MOLLOY/VESTNESA	Not closed
HN21_226_BCO_007bis	06/07/2021	17:18	1269	79°07,625'N	006°00,081'E	MOLLOY/VESTNESA	48

La stazione BCO_007 è stata ripetuta perché durante la prima calata il box corer non si era correttamente chiuso.

Nella tabella successiva sono segnati i valori NATSUR e NATQUA richiesti dall'S-57.

BOXCORER	DATA	NATSUR	NATQUA
HN21_183_BCO_005	03/07/2021	1	5
HN21_225_90BCO_006	06/07/2021	1;4	5;1
HN21_226_BCO_007bis	06/07/2021	1	4

11. Altre osservazioni / misurazione

11.1. Osservazioni ghiacci

Uno degli aspetti salienti che caratterizzano le navigazioni polari quando si opera lungo il ciglio dei ghiacci è il continuo monitoraggio della dinamica della banchisa e del *drift* dei ghiacci. Sono state impiegate immagini satellitari e prodotti derivati da queste per il continuo monitoraggio e valutazione della concentrazione del ghiaccio nei pressi della banchisa.

• In annesso R i prodotti satellitari impiegati e la tabella riepilogativa degli stessi.

11.2. Osservazioni superficiali di marine litter

Durante le operazioni di acquisizione dati multibeam, in accordo con il protocollo sviluppato durante la UN Ocean Decade sono state effettuate 5 attività di osservazione del Marine Litter. Le osservazioni sono state condotte dal personale seguendo le linee guida sviluppato in ambito dell'azione 35 delle Nazioni Unite ed in linea con il protocollo GESAMP (Group of Expert on the Scientific Aspect of Marine Environmental Protection). Durante l'attività, svolta prevalentemente dalle alette di plancia e condizionata dalle condimeteo, il personale ha raccolto informazioni riguardanti le plastiche e altri corpi flottanti degni di nota.

• In annesso R la relativa relazione.

11.3. Manta

Durante le operazioni di acquisizione dati multibeam sono state effettuate 2 calate con la manta per la cattura di microplastiche. Ogni campione è stato filtrato con un setaccio con maglia di 100 µm, raccolto in appositi contenitori in vetro e stabilizzato con etanolo 80% per le successive analisi al rientro presso i laboratori.

In annesso R la relativa relazione.

11.4. Niskin / Van Dorne

Durante le operazioni nelle aree di interesse sono stati effettuati campionamenti d'acqua sia tramite bottiglie Niskin e Van Dorne superficiali, che utilizzando la rosetta di bottiglie Niskin associata alla sonda multiparametrica SBE 911.

Le analisi, di carattere chimico-biologico, serviranno per caratterizzare la colonna d'acqua e valutare la concentrazione di clorofilla sia per il legame con le analisi radiometriche che per

le analisi biologiche sul phytoplankton; inoltre verranno condotte analisi di radionuclidi per lo studio dell'età delle masse d'acqua e loro distribuzione spaziale.

In questa zona di scandagliamento sono stati acquisiti 18 sub-campioni per la clorofilla, 14 sub-campioni per il phytoplankton e 21 sub-campioni per i radionuclidi. Ogni sub campione è stato conservato in apposito contenitore a °4C.

• In annesso R la relativa relazione.

•

11.5. Acquisizioni CTD e velocità del suono

Durante le attività di scandagliamento è stata spesso osservata una repentina, e a volte consistente, variazione della velocità della propagazione del suono in acqua. Al fine di valutare la natura del fenomeno, simile a quello presente alla foce dei fiumi, è stata condotta un'analisi delle temperature superficiali sfruttando i dati delle calate CTD e della sonda a scafo delle prese acqua mare. Nell'area di interesse sono state effettuate 7 calate con la sonda SBE 911.

I dati sono stati acquisiti con il software "Seasave 7" e processati con il software "SBE data processing", mostrando la presenza di differenti masse d'acqua nelle zone interessate che, lungo i fronti, causano una forte eterogeneità degli strati superficiali della colonna d'acqua. Per l'analisi in dettaglio si rimanda alla relativa relazione in annesso.

• In annesso R la relativa relazione.

12.Blocco firme e certificazione di qualità a standard IHO/S-44

	RELAZI(ONE DEL RILIEV	70 ()	
Sezione	Nome e Firma Compilatore	DATA	Nome e Firma Revisore ¹	DATA
1 2 3 4 5 6 7 8	C°1ª CL Marro Mauro	13/06/21 – 02/07/21	C.F. r.n. (s.p.w.) IDO Maurizio Demarte	02/07/2021

	RELAZIONE TECNIO	CA DEL RILIEV	O (ANNESSI)	
Annesso	Nome e Firma Compilatore	DATA	Nome e Firma Revisore ¹	DATA
A B C D E F G H I	C°1ª CL Marro Mauro	13/06/21 – 02/07/21	C.F. r.n. (s.p.w.) IDO Maurizio Demarte	02/07/2021

Certificazione Finale di Qualità del Rilievo a Standard IHO/S-44:

CERTIFICAZION	E del RILIEVO	
Responsabile	Timbro e Firma	Data
Io sottoscritto C.F. r.n. (s.p.e.) IDO Maurizio		
DEMARTE in possesso del "Certificate of Field		
Proficiency of Hydrographic Surveyor specialized in	C.F. r.n. (s.p.e.) IDO	22/02/2022
Nautical Charting Hydrography" N. 31 rilasciato in	Maurizio Demarte	
data 17/09/2003 dall'Istituto Idrografico della Marina,		
certifico che il rilievo effettuato da Nave ALLIANCE		
nei periodi dal 13/06/2021 - 02/07/2021 in località Ovest		
delle Svalbard è stato eseguito seguendo i minimi		
standard previsti dalla pubblicazione IHO/S-44 (VI		

Edizione)	edita	dall'International	Hydrographic
		ine 2. IHO S-57 CAT	

Documentazione tecnica (materiale digitale annesso)

Annesso A

• documenti nautici

Annesso B

- Specifiche tecniche (Brochure ecoscandagli e sistemi inerziali)
- Configurazioni (Layout, configurazioni ed impostazioni sistemi idrografici)
 - Setup (File di configurazione sistemi idrografici)
- Caris (Raw data, progetti e prodotti di elaborazione)
 - H&S_Project (Progetto di processazione Caris Hips&SIPS)

Annesso C

• Specifiche tecniche (Brochure strumenti e servizi per il posizionamento)

Annesso D

• Specifiche tecniche (Brochure sonde VS)

Annesso G

Certificati di calibrazione

Annesso L

- Schede dei campioni;
- File con le posizioni dei campionamenti .hob;

Annesso R

• Dettagli di Osservazioni Geofisiche od Oceanografiche